马坚伟,男,1976年12月出生于浙江东阳,北京大学地球与空间科学学院博雅特聘教授,北京大学人工智能地球科学中心主任,人工智能研究院智慧宜居地球中心主任。 1998年本科毕业于大连理工大学工程力学系,2002年博士毕业于清华大学固体力学专业。在国外从事博士后和访问学者研究多年,并先后受聘于清华大学航天航空学院(讲师、副教授)、哈尔滨工业大学数学学院和人工智能研究院。曾获国家杰出青年科学基金资助、国家高层次人才计划、科技部中青年科技创新领军人才、中组部首届青年拔尖人才、教育部新世纪优秀人才、中国百篇最具影响国际学术论文、黑龙江省自然科学一等奖、傅承义青年科技奖、中国地球物理科技创新二等奖和科技进步二等奖(2项)。 主持国家重点研发计划项目(2项)、国家自然科学基金重点项目、企业创新发展联合基金集成项目等。担任中国地球物理学会智能地球物理专业委员会主任、中国地质学会数据驱动与地学发展专业委员会副主任、IEEE Transactions on Geoscience and Remote Sensing期刊副主编。从事勘探地球物理学、应用数学、人工智能的交叉学科研究,在Reviews of Geophysics, IEEE Signal Processing Magazine, PNAS, Nature Communications等期刊发表论文,谷歌学术被引约7500次。入选2022年版“全球前2%顶级科学家终身成就榜” 。
哈尔滨工业大学龙江学者特聘教授,哈尔滨工业大学数学学院院长,博士生导师。主要从事应用数学和地震勘探的交叉学科研究,基于稀疏变换和压缩感知,提出降低数据采集成本和提高数据分辨率的理论技术。
教育及工作经历:
1994/09/01-1998/07/01,大连理工大学 本科 工程力学系。
1998/09/01-2002/08/01,清华大学 博士 工程力学系 (地震波勘探研究所)。
2020/05-至今,北京大学,地球与空间科学学院,博雅特聘教授。
2011/07/01-2020/04,哈尔滨工业大学数学系 教授 龙江学者特聘教授。
2010/05/01-2011/06/01,美国佛罗里达州立大学 Scientist。
2006/02/01-2010/05/01,清华大学航天航空学院(地震波勘探研究所) 讲师、副教授。
2002/10/01-2006/02/1,英国剑桥大学、法国Grenoble一大等 博士后。
2014/03-2014/09,德克萨斯大学澳斯汀分校 地球物理勘探。
2013/07-2013/08,香港浸会大学 数学。
2012/12-2012/12,新加坡国立大学 数学。
2009/03/01-2009/09/01,法国巴黎高等矿业大学 地球物理勘探。
2008/05/01-2008/06/30,法国格勒诺布尔大学 数学。
2007/06/01-2007/09/01,美国佛罗里达州立大学 数学。
2006/06/01-2006/08/30,瑞士洛桑联邦理工大学(EPFL) 数学。
2005/09/01-2005/09/30,德国杜伊斯堡大学 数学。
PROFESSIONAL SOCIETIES
1、Member of the SEG China Advisory Committee, 2021-2023
2、Board of Directors, SEG Global Inc., 2020
3、Co-Guest Associate Editor: The Leading Edge, Special issue: Exploration Geophysics in China (2019)
4、Co-Guest Associate Editor: Geophysics, Sepical section: Advances in Mathematical Geophysics (2023)
5、Associate Editor: IEEE TGRS (2022-2025), IEEE GRSL (2019-2022), Journal of Geophysics and Engineering (2020-2023), Applied Geophysics
6、Technical Co-Chair for SEG 4th International Workshop on Mathematical Geophysics: Traditional & Learning (2021)
7、Technical Co-Chair for SEG 3rd International Workshop on Mathematical Geophysics: Traditional vs Learning (2019
8、Organizer for International Summer School on Mathematics and AI (2015, 2017, 2018, 2021)
9、Technical Co-Chair for CPS/SEG International Geophysical Conference and Exposition (2018)
10、Co-Chair for CPS/SEG Artificial Intelligence and Compressed Sensing Geophysical Workshop (2018)
11、Co-Chair for International Workshop on Mathematical Geophysics (2015, 2017)
12、Technical Co-Chair for SEG Workshop on Geophysical Compressed Sensing (2015)
13、Co-Chair for International Workshop on Signal Processing, Optimization and Compressed Sensing (2013
14、Committee member for CSIAM (2016-2021)
15、IEEE Senior Member, SEG Active Member, EAGE member
主讲课程:
研究生 压缩感知
本科生 复变函数与积分变换
培养研究生情况:
博士研究生:
1.刘丽娜 2014/9 至今 数学系 东北林业大学(本科),哈工大(硕士)
2.隋宇函 2014/9 至今 数学系 哈工大(本科)
3.于四伟 2014/2 至今 数学系 (2014-2016,访问Stanley Osher教授) 清华大学(本科),清华大学(硕士)
4.蔡魁杰 2013/9 至今数学系 吉林大学(本科),哈工程(硕士)
5.刘朝 2013/9 至今 数学系 哈师大(本科),哈工大(硕士)
6.汪海蓉 博士研究生 2012/9 至今 数学系(2014-2015,访问Mauricio Sacchi教授)哈理工(本科),哈工大(硕士)
硕士研究生:
1.朱强强 2013/9-2015 数学系
2.史瑞 2013/9-2015 数学系
3.贾永娜 2012/9-2014 数学系 获得国家奖学金
4.漆胜楠 2012/9-2014 数学系
研究方向:
地震勘探、压缩感知、稀疏变换、图像处理、遥感成像。
承担科研项目情况:
作为项目负责人承担了国家自然科学基金(青年项目),教育部新世纪优秀人才支持计划,国家自然科学基金(面上项目),中组部首届青年拔尖人才计划 ,校基础研究杰出人才“跃升”培育计划,国家自然科学基金(重大研究计划培育项目),国家自然科学基金(科学仪器专项),航天创新基金、中石油集团风险基金等项目,作为核心技术骨干参加了973项目子课题。
1、PI: National Key Research and Development Program of China (Mathematics and mathematical applications)
2、PI: National Key Research and Development Program of China (High performance computing on energy exploration)
3、PI: NSFC (Geoscience Division) on 5D AI seismic data interpolation (Key project)
4、PI: NSFC (Geoscience Division) on exploration geophysics (Distinguished young scholar)
5、PI: NSFC (Mathematical Division) on low-rank matrix completion and seismic applications
6、PI: NSFC (Geoscience Division) on 3D data-driven tight frame for seismic data reconstruction
7、PI: NSFC (Information Division) on dynamic configurable imaging system based on compressed sensing
8、PI: NSFC (Geoscience Division) on curvelets for seismic wave equations
科研成果:
1.在国际上首次提出单像素遥感成像新体系,并对嫦娥探测器的月表面成像数据进行了模拟分析。他的研究对解决有效成像载荷和成像质量这对传统矛盾,为研发重量轻、体积小、耗能低的探测系统提供了一条新途径。该成果发表成论文后,已被引用90多次。
2.在稀疏促进地震勘探的交叉学科研究中,他将调和分析和优化理论的最新前沿技术带到地球物理勘探领域中,有效解决了勘探数据处理中测量数据不足带来的实际困扰问题。他提出基于稀疏约束优化和矩阵低秩约束优化的地震数据重建和降噪方法,在提高我国某些区块的地震勘探数据分辨率和降低数据采集成本方面具有一定的价值。这些工作对近期国际研究的热点——压缩感知和矩阵完备,也是一个非常好的理论提升和交叉学科延伸。
3.在几何小波稀疏变换领域从事了15年的持续研究,构造了一些新颖有效的稀疏变换(如周期曲波变换、数据驱动紧框架、基于不等距傅里叶变换的快速脊波离散变换算法),并在著名国际期刊IEEE Signal Processing Magazine上发表了相关的邀请综述论文。这些新的变换为地震数据的稀疏表达提供了有效途径,为我国地震勘探学者在改进数据压缩、去噪、重构、偏移和反演质量等方面的重大科技创新提供一个基础储备和技术选择。
发明公开:
[1]马坚伟, 王猛. 一种基于二次残差网络的地震数据去噪方法[P]. 黑龙江省: CN118210055A, 2024-06-18.
[2]马坚伟, 于四伟, 陈尧, 徐英杰. 一种基于自监督迁移学习凸集投影网络的地震数据插值方法[P]. 黑龙江省: CN118211067A, 2024-06-18.
[3]马坚伟, 吴宇平. 一种全波形反演方法[P]. 黑龙江省: CN118169754A, 2024-06-11.
[4]马坚伟, 林荣智, 丁程雄, 徐玉豪. 基于快速低秩预测的非规则网格高维地震数据重构方法[P]. 黑龙江省: CN118169756A, 2024-06-11.
[5]马坚伟, 王猛, 林荣智. 一种基于二次神经元的地震相干噪声压制方法[P]. 黑龙江省: CN118169757A, 2024-06-11.
[6]马坚伟, 于四伟, 徐英杰, 陈尧. 一种基于Huber范数的非均一采样地震数据鲁棒重构方法[P]. 黑龙江省: CN118169758A, 2024-06-11.
[7]马坚伟, 顾则宇. 一种基于扩散模型的卫星在轨部件数据压缩重构方法[P]. 黑龙江省: CN118132955A, 2024-06-04.
[8]刘炯, 马坚伟, 季玉新, 刘喜武. 时变稀疏反褶积方法及系统[P]. 北京市: CN110646841A, 2020-01-03.
发明授权:
[1]马坚伟, 吴宇平. 一种全波形反演方法[P]. 黑龙江省: CN118169754B, 2024-10-01.
[2]马坚伟, 于四伟, 陈尧, 徐英杰. 一种基于自监督迁移学习凸集投影网络的地震数据插值方法[P]. 黑龙江省: CN118211067B, 2024-10-01.
[3]刘炯, 马坚伟, 季玉新, 刘喜武. 时变稀疏反褶积方法及系统[P]. 北京市: CN110646841B, 2021-05-25.
1 基于数据驱动紧框架小波稀疏约束优化的地震数据重建 马坚伟;Felix Herrmann;王力;汪海蓉;王静;何清龙;刘朝;刘丽娜;贾永娜 哈尔滨工业大学 2017
出版专著:
[1]J. Ma, A. S. Khwaja, M. Y. Hussaini, Compressed remote sensing, in Signal and Image Processing for Remote Sensing (Editor by Chi H. Chen), the second version, 2012, 73-90.
[2]G. Plonka, J. Ma, Curvelets, in Encyclopedia of Applied and Computational Mathematics (Editor by B. Engquist), Springer Berlin, 2013.
发表英文论文:JOURNAL PAPERS
2024:
[161]J. Sun, J. Ma, Z. Zhao, J. Yang, Elastic wavefield decomposition using the physical-constrained neural network and its application on reverse-time migration, 2024, submitted.
[160]H. Zhou, T. Ren, J. Ma*, Source directivity is a key mechanism of imaging attenuation under rugged seabed, Geophysics, 2024, submitted.
[159]H. Wang, S. Yu, T. Ren, J. Ma*, Compensation of seismic data in deep-water complex media using W transform and deep learning: A case study in South China Sea, Geophysics, 2024, submitted.
[158]P. Sun, Y. Wu*, F. Yang, J. Wang, H. Liang, J. Ma, TripleNet: A simple and fast 3D velocity model building network by learning geological characterization, 2024, submitted.
[157]M. Liu, F. Bossmann, W. Wang, J. Ma*, Towards artifact-free impedance inversion by a semi-supervised learning with Kolmogorov-Arnold networks, 2024, submitted.
[156]Z. Gu, G. Tang, J. Ma*, Compressive-sensing reconstruction for satellite monitor data using a deep generative model, IEEE Transactions on Instrumentation and Measurement, 2024, revised.
[155]Y. Wu, J. Ma*, A new regularization for seismic inversion via attention deep decoder, and its relationship to total variational regularization and wavelet transform, Geophyiscs, 2024, revised.
[154]Z. Xue, Y. Wang, X. Wu, J. Ma*, Multi-Geophysical information neural network for seismic tomography, Geophysics, 2024, revised.
[153]F. Yang, J. Ma*, Gabor-wavelet-activation implicit neural learning for full waveform inversion, Geophysics, 2024, revised
[152]F. Bossmann, W. Wu, J. Ma*, A fast and gridless ORKA algorithm for tracking moving and deforming objects, Inverse Problems, 2024, accepted.
[151]Y. Sui, X. Wang, J. Ma*, Quadratic Unet for seismic random noise attenuation, Geophysics, 2024, accepted.
[150]T. Gao, Z. Hong, Y. Tan, L. Sun, Y. Wei, J. Ma*, HC-MVSNet: A probabiliy sampling-based multi-view-stereo network with hybrid cascade structure for 3D reconstruction, Pattern Recognition Letters, 2024, 185, 59-65.
[149]J. Yang, H. Zhu*, Z. Zhao*, J. Huang*, D. Lumley, R. Stern, R. Dunn, A. Arnulf, J. Ma, Asymmetric magma plumbing system beneath axial seamount based on full waveform inversion of seismic data, Nature Communications, 2024, 15, 4767.
[148]Y. Xu, S. Yu*, L. Dong, J. Ma, Dealiased seismic data interpolation by dynamic matching, Geophysics, 2024, 89 (5).
[147]F. Li, H. Liu, W. Wang, J. Ma*, Swin transformer for seismic denoising, IEEE Geoscience and Remote Sensing Letters, 2024, 21, 7501905.
[146]Q. Liu, J. Ma*, Generative interpolation via a diffusion probabilistic model, Geophysics, 2024, 89 (1), V65-V85.
2023
[145]L. Li, J. Ma*, ISAnet: Deep neural network approximating image sequence assimilation for tracking fluid flows, IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, pp.1-20.
[144]X. Zhang, J. Ma*, S. Yu, Non-convex tensor completion for five-dimensional seismic data reconstruction, IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-12.
[143]J. Ma, Q. Cheng, S. Fomel, M. Sacchi, R-S. Wu, Y. Liu, Y. Elita Li, Advances in mathematical geophysics--Introduction, Geophysics, 88 (1), WAI-WAII.
[142]Z. Yu, J. Ma*, First arrival enhancement and extrapolation via third-order cumulant interferometry method, IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 5922412.
[141]P. Sun, F. Yang*, H. Liang, J. Ma, Full-waveform inversion using a learned regularization, IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 5920715.
[140]X. Wu, J. Ma*, S. Xu, Z. Bi, J. Yang, H. Gao, D. Xie, Z. Guo, J. Zhang*, Sensing priori constraints in deep neural networks for solving exploration geophysical problems, Proceedings of the National Academy of Sciences (PNAS), 2023, 120 (23), e2219573120.
[139]X. Zhang, J. Ma*, S. Yu, No-convex tensor completion for 5D seismic data reconstruction, IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 5904712.
[138]F. Yang, J. Ma*, Wasserstein distance-based full waveform inversion with a regularizer powered by learned gradient, IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 5904813.
[137]S. Yu*, J. Ma, Simultaneous off-the-grid regularization and interpolation for 3D seismic data by a new combined sampling operator, Geophysics, 2023, 88 (4), V291-V302.
[136]Y. Wu, H. S. Aghamiry, S. Operto, J. Ma*, Helmholtz-equation solution in nonsmooth media by a physics-informed neural network incorporated quadratic terms and a perfectly matching layer condition, Geophysics, 2023, 88 (4), T185-T202.
[135]H. Zhang, W. He, J. Ma*, The back-and-forth method for the quadratic Wasserstein distance-based full waveform inversion, Geophysics, 2023, 88 (4), R469-R483.
[134]R. Zhang, P. Boue, M. Campillo, J. Ma*, Quantifying P-wave secondary microseism events: a comparison of observed and modeled back projection, Geophysical Journal International, 2023, 234 (2), 933-947.
[133]W. Wang, G. McMechan, J. Ma*, Re-weighted variational full waveform inversions, Geophysics, 2023, 88 (4), R499-R512.
[132]F. Wang, J. Ma*, FWIGAN: Full waveform inversion via a physics-informed generative adversarial network, Journal of Geophysical Research-Solid Earth, 2023, 128, e2022JB025493.
[131]Y. Chen, S. Yu*, J. Ma, A projection-onto-convex-sets network for 3D seismic data interpolation, Geophysics, 2023, 88 (3), V249-V265.
[130]W. Wang, Y. Sui, J. Ma*, Random noise attenuation via an improved self-supervised deep learning method, Mathematical Geoscience, 2023, 55, 3, 401-422.
[129]Y. Sui, X. Wang, J. Ma*, Deep unfolding dictionary learning for seismic denoising, Geophysics, 2023, 88 (1), WA129-WA147.
[128]L. Liu, J. Ma*, DL2: Dictionary learning regularized with deep learning prior for simultaneous denoising and interpolation, Geophysics, 2023, 88 (1), WA13-WA25.
[127]X. Zhang, J. Ma*, H. Zhang, Curvature regularized manifold for seismic data interpolation, Geophysics, 2023, 88 (1), WA37-WA53.
2022
[126]F. Bossmann*, J. Ma, ORKA: Object reconstruction using a K-approximation graph, Inverse Problems, 2022, 38 (12), 125009.
[125]L. Zhang, G. Zhang*, Z. Fan, J. Ma, A multi-task deep learning for simultaneous denoising and inversion of 3D gravity data, IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 5923117.
[124]H. Sun, F. Yang, J. Ma*, Seismic random noise attenuation via self-supervised transfer learning, IEEE Geoscience and Remote Sensing Letters, 2022, 19.
[123]C. Ding, J. Ma*, Automatic migration velocity analysis via deep learning, Geophysics, 2022, 87 (4):U135-U153.
[122]Wu, Yanqi; Ma, Jianwei*, Rayleigh wave equations with couple stress: modeling and dispersion characteristic, Geophysics, 2022, 87 (1): T1-T13.
[121]L. Li, J. Ma*, F. Le Dimet, A. Vidard, Assimilation of images via dictiornary learning-based sparsity regularization strategy: an application for retrieving fluid flows, IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5907120.
2021
[120]Siwei, Yu; Jianwei, Ma*, Deep learning for geophysics: current and future trends, Reviews of Geophysics, 2021, 59 (3), e2021RG000742.
[119]Yang, Fangshu; Pham, Thanh-An; Brandenberg, Nathalie; Lutolf, Matthias P.; Ma, Jianwei*; Unser, Michael, Robust phase unwrapping via deep image prior for quantitative phase imaging, IEEE Transactions on Image Processing, 2021, 30: 7025-7037.
[118]Wang, Wenlong*; McMechan, George A.; Ma, Jianwei, Elastic isotropic and anisotropic full wave-form inversions using automatic differentiation for gradient calculations in a framework of recurrent neural networks, Geophysics, 2021, 86 (6), R795-R810.
[117]S. Yu, W. Yang, H. Li, X. Wang, J. Ma*, Scattered ground roll intelligent attenuation based on deep learning, Chinese Science Bulletin, 2021, 66 (18), 2343-2354.
[116]Wang, Wenlong*; McMechan, George A.; Ma, Jianwei; Xie, Fei, Automatic velocity picking from semblances with a new deep learning regression strategy: comparison with a classification approach, Geophysics, 2021, 86(2): U1-U13.
[115]Zhang, Jie; Zhu, Huiyu; Yu, Siwei; Ma, Jianwei*, Constructing the seismograms of future earthquakes in Yunnan, China using compressed sensing, Seismological Research Letters, 2021, 92(1): 261-274.
[114]Banjade, Tara P.*; Liu, Jiong; Li, Haishan; Ma, Jianwei.Enhancing earthquake signal based on variational mode decomposition and S-G filter.Journal of Seismology, 2021, 25(1): 41-54.
2020
[113]H. Zhang, J. Ma*, Hartley spectral pooling for deep learning, CSIAM Transactions on Applied Mathematics, 2020,1 (3), 518-529.
[112]Sui, Yuhan; Ma, Jianwei*, Blind sparse spike deconvolution with thin layers and structure, Geophysics, 2020, 85(6): V481-V496.
[111]J. Ma*, Random low patch-rank method for interpolation of regularly missing traces, Journal of Harbin Institute of Technology (new series): special issue for the 100th anniversary, 2020, 27 (3), 205-216.
[110]Yang, Fangshu; Pham, Thanh-An; Gupta, Harshit; Unser, Michael; Ma, Jianwei*, Deep learning projector for optical diffraction tomography, Optics Express, 2020, 28(3): 3905-3921.
[109]Zhang, Hao; Yang, Xiuyan; Ma, Jianwei*, Can learning from natural image denoising be used for seismic data interpolation?, Geophysics, 2020, 85(4): WA115-WA136.
[108]Yu, Siwei; Ma, Jianwei; Zhao, Bangliu Off-the-grid VSP data regularization by a compressive sensing method, Geophysics, 2020, 85(2): V157-V168.
[107]Wang, Wenlong; Ma, Jianwei, Velocity model building in a cross-well acquisition geometry with image-trained artificial neural networks, Geophysics, 2020, 85(2): U31-U46.
[106]Wang, Xiaojing; Ma, Jianwei*, Adaptive dictionary learning for blind seismic data denoising, IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1273-1277.
[105]Bossmann, Florian; Ma, Jianwei*, Enhanced image approximation using shifted rank-1 reconstruction, Inverse Problems and Imaging, 2020, 14(2): 267-290.
2019
[104]Wang, Xiaojing; Wen, Bihan; Ma, Jianwei*, Denoising with weak feature preservation by group-sparsity transform learning, Geophysics, 2019, 84(6): V351-V368.
[103]S. Yu, J. Ma*, W. Wang, Deep learning for denoising, Geophysics, 2019, 84(6): V333-V350.
[102]Yang, Fangshu*; Ma, Jianwei, Deep-learning inversion: a next generation seismic velocity model building method, Geophysics, 2019, 84 (4), R583-R599.
[101]Sui, Yuhan; Ma, Jianwei*, A nonstationary sparse spike deconvolution with anelastic attenuation, Geophysics, 2019, 84(2): R221-R234.
[100]Li Long; Vidard Arthur; Le Dimet Francois Xavier; Ma Jianwei*, Topological data assimilation using Wasserstein distance, Inverse Problems,2019, 35(1): 015006.
[99]Cai, Kuijie; Ma, Jianwei*, Robust estimation of multiple local dips via multidirectional component analysis, IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2798-2810.
[98]Liu Zhao*; Ma Jianwei; Yong Xueshan. Line survey joint denoising via low rank minimization, Geophysics, 2019, 84(1): V21-V32.
[97]Liu, Lina; Ma, Jianwei*, Structured graph dictionary learning and application on the seismic denoising, IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1883-1893.
[96]Banjade, Tara P; Yu, Siwei*; Ma, Jianwei.Earthquake accelerogram denoising by wavelet-based variational mode decomposition.Journal of Seismology, 2019, 23(4): 649-663.
[95]Li, Yongyi; Miao, Xiaogui; Huo, Shoudong; Ma, Jianwei; Cao, Danping.Introduction to this special section: Exploration geophysics in China.Leading Edge (Tulsa, Ok), 2019, 38(8): 596.
2018
[94]Gemechu Diriba; Ma Jianwei*; Yong Xueshan A compound method for noise attenuation, Geophysical Prospecting, 2018, 66(8): 1548-1567.
[93]Liu Lina*; Ma Jianwei; Plonka Gerlind, Sparse graph-regularized dictionary learning for random seismic noise, Geophysics, 2018, 83 (3): V213-V231.
[92]Yu Siwei*; Ma Jianwei; Osher Stanley, Geometric mode decomposition, Inverse Problems and Imaging, 2018, 12(4): 831-852.
[91]Jia Yongna*; Yu Siwei; Ma Jianwei*, Intelligent interpolation by Monte Carlo machine learning, Geophysics, 2018, 83 (2): V83-V97.
[90]Yu, Siwei; Ma, Jianwei*, Complex variational model decomposition for slop-preserving denoising, IEEE Transactions on Geoscience and Remote Sensing, 2018, 56 (1): 586-597.
[89]Liu Zhao; Chen Yangkang; Ma Jianwei*.Ground roll attenuation by synchrosqueezed curvelet transform.Journal of Applied Geophysics, 2018, 151: 246-262.
[88]Yuan Huan; Hu Zi-Duo; Liu Zhao; Ma Jian-Wei*.Ground roll attenuation based on an empirical curvelet transform.Applied Geophysics, 2018, 15(1): 111-117.
2017
[87]J. Ma*, S. Yu, Sparsity in compressive sensing, The Leading Edge, 2017, 36 (8), 308-314. (an invited short review).
[86]Li, Long; Le Dimet, Francois-Xavier; Ma, Jianwei*; Vidard, Arthur, A level-set based image assimilation method: applications for predicting the movement of oil spills, IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (11): 6330-6343.
[85]Liu, Lina; Plonka, Gerlind; Ma, Jianwei*, Seismic data interpolation and denoising by learning a tensor tight frame, Inverse Problems, 2017, 33 (10): 105011. Highlights of 2017)
[84]Yu, Siwei*; Osher, Stanley; Ma, Jianwei; Shi, Zuoqiang, Noise attenuation in a low dimensional manifold, Geophysics, 2017, 82 (5): V321-V334.
[83]Jia, Yongna; Ma, Jianwei*, What can machine learning do for seismic data processing? an interpolation application, Geophysics, 2017, 82 (3): V163-V177.
[82]Jan Henrik Fitschen; Jianwei Ma; Sebastian Schuff, Removal of curtaining effects by a variational model with directional first and second order differences, Computer Vision and Image Understanding, 2017, 155: 24-32.
[81]Wang, Hairong; Sacchi, Mauricio; Ma, Jianwei*, Linearized dynamic warping with L1-norm constraint for multi-component registration, Journal of Applied Geophysics, 2017, 139:170-176.
[80]Diriba Gemechu; Huan Yuan; Jianwei Ma.Random noise attenuation using an improved anisotropic total variation regularization.Journal of Applied Geophysics, 2017, 144: 173-187.
2016
[79]Bossmann, Florian*; Ma, Jianwei*, Asymmetric chirplet transform--Part 2: phase, frequency, and chirp rate, Geophysics, 2016, 81 (6): V425-V439.
[78]Cai Zhang; Bingbing Sun; Jianwei Ma; Huizhu Yang; Ying Hu, Splitting algorithm for high-order compact finite difference scheme in wave equation modeling, Geophysics, 2016, 81 (6): T295-T302.
[77]Yu, Siwei; Ma, Jianwei*; Osher, Stanley, Monte Carlo data-driven tight frame for seismic data recovery, Geophysics, 2016, 81 (4): V327-V340.
[76]Chen, Yangkang; Ma, Jianwei*; Fomel, Sergey, Double sparsity dictionary for seismic noise attenuation, Geophysics, 2016, 81 (2): V17-V30.
[75]Zhang, C.*; Sun, B.; Yang, H.; Ma, J. A non-split perfectly matched layer absorbing boundary condition for the second-order wave equation modeling.Journal of Seismic Exploration, 2016, 25(6): 513-525.
[74]Yongna Jia; Siwei Yu; Lina Liu; Jianwei Ma.A fast rank-reduction algorithm for three-dimensional seismic data interpolation.Journal of Applied Geophysics, 2016, 132: 137-145.
2015
[73]Bossmann, Florian; Ma, Jianwei*, Asymmetric chirplet transform for sparse representation of seismic data, Geophysics, 2015, 80 (6): WD89-WD100.
[72]Yu, Siwei*; Ma, Jianwei; Zhang, Xiaoqun; Sacchi, Mauricio D., Interpolation and denoising of high-dimensional seismic data by learning a tight frame, Geophysics, 2015, 80 (5): V119-V132.
[71]J. Fitschen*, J. Ma, S. Schuff, Removel of curtaining effects by a variational model with directional first and second order differences, 2015, IEEE Trans. Image Processing, submitted.
[70]S. Yu, J. Ma*, S. Osher, Monte Carlo data-driven tight frame for seismic data recovery, Geophysics, 2015, revised.
[69]Yu, Siwei; Ma, Jianwei*; Zhang, Xiaoqun; Sacchi, Mauricio, Denoising and interpolation of high-dimensional seismic data by learning tight frame, Geophysics, 2015, 80 (5): V119-V132.
[68]Y. Chen*, S. Jiao, J. Ma, et al., Ground-roll noise attenuation using a simple and effective approach based on local bandlimited orthogonalization, IEEE Geoscience and Remote Sensing Letters, 2015, accepted.
[67]Tang, Gang; Yang, Qin; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei, Sparse classfication of rotating machinery faults based on compressive sensing strategy, Mechatronics, 2015, 31: 60-67.
[66]Wang, Jing; Ma, Jianwei*; Han, Bo; Cheng, Yuanfeng, Seismic data reconstruction via weighted nuclear-norm minimization, Inverse Problem in Science and Engineering, 2015, 23(2): 277-291.
[65]Chen, Yangkang; Jiao, Shebao; Ma, Jianwei; Chen, Hanming; Zhou, Yatong; Gan, Shuwei.Ground-rollnoise attenuation using a simple and effective approach based on localbandlimited orthogonalization.IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2316-2320.
[64]Tang, Gang; Hou, Wei; Wang, Huaqing*; Luo, Ganggang; Ma, Jianwei.Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.Sensors, 2015, 15(10): 25648-25662.
[63]S. Beckouche, J. Ma*, Simultaneously dictionary learning and denoising for seismic data, Geophysics, 2014, 79 (3), A27-A31.
[62]J. Liang, J. Ma*, X. Zhang, Seismic data restoration via data-driven tight frame,Geophysics, 2014, 79 (3), V65-V74.
[61]H. Wang, Y. Chen, J. Ma*, Curvelet-based registration of multi-component seismic waves, Journal of Applied Geophysics, 2014, 104, 90-96.
2013
[60]Y. Yang*, J. Ma, S. Osher, Seismic data reconstruction via matrix completion, Inverses Problem and Imaging, 2013, 7 (4): 1379-1392.
[59]J. Ma*, Three-dimensional irregular seismic data reconstruction via low-rank matrix completion, Geophysics, 2013, 78 (5): V181-V192.
[58]Shahidi, Reza*; Tang, Gang; Ma, Jianwei; Herrmann, Felix J. Application of randomized sampling schemes to curvelet-based sparsity-promoting seismic data recovery, Geophysical Prospecting, 2013, 61 (5): 973-997.
2012
[57]Li, Qin; Ma, Jianwei*; Erlebacher, Gordon. A new reweighted algorithm with support detection for compressed sensing, IEEE Signal Processing Letters, 2012, 19(7): 419-422.
[56]He, Yanyan; Hussaini, M. Yousuff; Ma, Jianwei*; Shafei, Behrang; Steidl, Gabriele, A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data, Pattern Recognition, 2012, 45, 3463-3471.
[55]Ma, Jianwei*; Plonka, Gerlind; Hussaini, M. Yousuff, Compressive video sampling with approximate message passing decoding, IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(9): 1354-1364.
[54]Tsai, Kunyu; Ma, Jianwei*; Ye, Datian; Wu, Jian, Curvelet processing of MRI for local image enhancement, International Journal for Numerical Methods in Biomedical Engineering, 2012, 28(6-7): 661-677.
[53]Tang, Gang; Ma, JianWei; Yang, Huizhu.Seismic data denoising based on learning-type overcomplete dictionaries.Applied Geophysics, 2012, 9(1): 27-32.
[52]Xu, Jie; Ma, Jianwei*; Zhang, Dongming; Zhang, Yongdong; Lin, Shouxun, Improved total variation minimization method for compressive sensing by intra prediction, Signal Processing, 2012, 92(11): 2614-2623.
[50]Yu, Hongjun; Wu, Linzhi; Guo, Licheng; Ma, Jianwei; Li, Hui.A domain-independent interaction integral for fracture analysis of nonhomogeneous piezoelectric materials. International Journal of Solids and Structures, 2012, 49(23-24): 3301-3315.SCI
[49]Yu, Siwei; Khwaja, A. Shaharyar; Ma, Jianwei*.Compressed sensing of complex-valued data.Signal Processing, 2012, 92(2): 357-362.
[48]Wang, Jing; Ma, Jianwei*; Han, Bo; Li, Qin, Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography, Signal Processing, 2012, 92(12): 2952-2961.
2011
[47]J. Ma*, Improved iterative curvelet thresholding for compressed sensing, IEEE Transactions on Instrumentation and Measurement, 2011, 60 (1): 126-136.
[46]J. Ma*, Compressed sensing by iterative thresholding of geometric wavelets: a comparing study, Int. J. Wavelet, Multiresolution Information Processing, 2011, 9: 63-77.
[45]B. Sun, H. Chauris*, J. Ma, 3D post-stack one-way migration using curvelets, Journal of Seismic Exploration, 2011, 20 (3):257-271.
[44]Tang, Gang; Ma, Jianwei*, Applications of total variation based curvelet shrinkage for three-dimensional seismic denoising, IEEE Geoscience and Remote Sesing Letters, 2011, 8 (1): 103-107.
[43]Khwaja, Shaharyar; Ma, Jianwei*, Applications of compressed sensing for SAR moving target velocity estimation and image compression, IEEE Transactions on Instrumentation and Measurement, 2011, 60 (8): 2828-2860.
[42]Plonka, Gerlind*; Ma, Jianwei, Curvelet-wavelet regularized split Bregman iteration for compressed sensing, Int. J. Wavelet, Multiresolution Information Processing, 2011, 9 (1):79-110.
[41]Ma, Jianwei*; Hussaini, M. Yousuff, Extensions of compressed imaging: flying sensor, coded mask, and fast decoding, IEEE Transactions on Instrumentation and Measurement, 2011, 60 (9): 3128-3139.
[40]Sun, Bingbing*; Chauris, Herve; Ma, Jianwei, 3D post-stack one-way migration using curvelets, Journal of Seismic Exploration, 2011, 20 (3): 257-271.
2010
[39]Ma, Jianwei*; Plonka, Gerlind, The curvelet transform [入选2010年中国百篇最具国际影响力的论文] IEEE Signal Processing Magazine, 2010, 27(2): 118-133.SCI
[38]J. Ma*, Compressed sensing for surface characterization and metrology, IEEE Transactions on Instrumentation and Measurement, 2010, 59 (6), 1600-1615.SCI
[37]Liu, Jiong*; Ba, Jing; Ma, JianWei; Yang, HuiZhu, An analysis of seismic attenuation in random porous media, Science China Physics,Mechanics & Astronomy, 2010, 53(4): 628-637.
[36]Shan, Hao; Ma, Jianwei*.Curvelet-based geodesic snakes for image segmentation with multiple objects.Pattern Recognition Letters, 2010, 31(5): 355-360.SCI
[35]J. Liu, J. Ma, H. Yang.Research on P-wave’s propagation in White’s sphere model with patch saturation() Chinese J. Geophysics 2010, 53: 954-962.SCI
[34]Mi, Tieliang*; Ma, Jianwei; Chauris, Herve; Yang, Huizhu, Multilevel adaptive mesh modeling for wave propagation in layer media, Journal of Seismic Exploration, 2010, 19 (2):121-139.SCI
[33]Tian, Yanchun; Ma, Jianwei*; Yang, Huizhu.Wavefield simulation in porous media saturated with two immiscible fluids.Applied Geophysics, 2010, 7(1): 57-65.SCI
[32]Ma, Jianwei*; Plonka, Gerlind; Chauris, Herve, A new sparse representation of seismic data using adaptive easy-path wavelet transform, IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 540-544.SCI
[31]Krommweh, Jens; Ma, Jianwei*, Tetrolet shrinkage with anisotropic TV minimization for image approximation, Signal Processing, 2010, 90(8): 2529-2539.
2009
[30]Shan, Hao; Ma, Jianwei*; Yang, Huizhu.Comparisons of wavelets, contourlets and curvelets in seismic denoising.Journal of Applied Geophysics, 2009, 69(2): 103-115. SCI
[29]Y. Tian Z. Zhang Ma, Jianwei* H.Yang.Inversing physical parameter of saturated porous viscoelastic media by homotopy method.Chinese Journal of Geophysics, 2009, 52(9): 2328-2334.SCI
[28] J. Liu Ma, Jianwei*, H. Yang. Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation. Chinese Journal of Geophysics, 2009, 52(11): 2879-2885.SCI
[27]Liu, Jiong; Ma, Jianwei*; Yang, Huizhu.The study of perfectly matched layer absorbing boundaries for SH wave fields.Applied Geophysics, 2009, 6(3): 267-274..SCI
[26]Sun, Bingbing; Ma, Jianwei; Chauris, Herve*; Yang, Huizhu,Solving the wave equation in the curvelet domain: a mulit-scale and multi-directional approach. Journal of Seismic Exploration, 2009, 18(4): 385-399.SCI
[25]Ma, Jianwei*; Le Dimet, Francois-Xavier, Deblurring from highly incomplete measurements for remote sensing, IEEE Transactions on Geoscience and Remote Sensing, 2009, 47 (3): 792-802.SCI
[24]J. Ma*, A single-pixel imaging system for remote sensing using two-step iterative curvelet thresholding, IEEE Geoscience and Remote Sensing Letters, 2009, 6 (4): 676-680.SCI
[23]J. Ma*, Single-pixel remote sensing, IEEE Geoscience and Remote Sensing Letters, 2009, 6 (2): 199-203.SCI
[22]Ma, Jianwei*; Plonka, Gerlind.Computing with curvelets: from image processing to turbulent flows.IEEE J. Computing in Science & Engineering, 2009, 11(2): 72-80.SCI
[21]Ma, Jianwei; Hussaini, M. Yousuff*; Vasilyev, Oleg V.; Le Dimet, Francois-Xavier.Multiscale geometric analysis of turbulence by curvelets.Physics of Fluids, 2009, 21(7): 75104.SCI
2009年以前
[20]Jiang, Xiangqian*; Zeng, Wenhan; Scott, Paul; Ma, Jianwei; Blunt, Liam.Linear feature extraction based on complex ridgelet transform.Wear, 2008, 264(5-6): 428-433.. SCI
[19]Plonka, Gerlind*; Ma, Jianwei.Nonlinear regularized reaction-diffusion filters for denoising of images with textures.IEEE Transactions on Image Processing, 2008, 17(8): 1283-1294..SCI
[18]J. Ma.Compressed sensing by inverse scale space and curvelet thresholding. Applied Mathematics and Computation,2008, 206: 980-988.SCI
[17]Hu, Bin*; Tang, Gang; Ma, Jianwei; Yang, Huizhu.Parametric inversion of viscoelastic medium from VSP data using genetic algorithm.Applied Geophysics, 2008, 4(3): 194-200.SCI
[16]Ma, Jianwei*; Hussaini, M. Yousuff.Three-dimensional curvelets for coherent vortex analysis of turbulence.Applied Physics Letters, 2007, 91(18): 184101.SCI
[15]Ma, Jianwei*; Plonka, Gerlind.Combined curvelet shrinkage and nonlinear anisotropic diffusion.IEEE Transactions on Image Processing, 2007, 16(9): 2198-2206.SCI
[14]J. Ma*, Characterization of textual surfaces using wave atoms, Applied Physics Letters, 2007, 90, 264101.SCI
[13]J. Ma*, Curvelets for surface characterization, Applied Physics Letters, 2007, 90, 054109.SCI
[12]J. Ma*, Deblurring using singular integrals and curvelet shrinkage, Physics Letters A, 2007, 368, 245-250. SCI
[11]Plonka, Gerlind*; Ma, Jianwei.Convergence of an iterative nonlinear scheme for denoising of piecewise constant images.International Journal of Wavelets, Multiresolution and Information Processing, 2007, 5(6): 975-995..SCI
[10]Ma, Jianwei*; Fenn, Markus, Combined complex ridgelet shrinkage and total variation minimization, SIAM Journal on Scientific Computing, 2006, 28 (3):984-1000.SCI
[9]Ma, Jianwei*; Antoniadis, Anestis; Le Dimet, Francois-Xavier, Curvelets-based snake for multiscale detection and tracking for geophysical fluids, IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 (12): 3626-3638. SCI
[8]J. Ma.Towards artifact-free characterization of surface topography using complex wavelets transform and total variation minimization Applied Mathematics and Computation 2005, 270: 1014-1030.SCI
[7]Ma, Jianwei*; Jiang, Xiangqian; Scott, Paul, Complex ridgelet for shift invariant characterization of surface topography with line singularities, Physics Letters A, 2005, 344(6): 423-431.SCI
[6]J. Ma*, An exploration of multiresolution symplectic scheme for wave propagation using second generation wavelets, Physics Letters A, 2004, 328 (1):36-46.SCI
[5]Ma, Jianwei*; Yang, Huizhu.Multiresolution symplectic scheme for wave propagation in complex media.Applied Mathematics and Mechanics (English Edition ), 2004, 25(5): 573-579.
[4]Ma, Jianwei*; Yang, Huizhu; Zhu, Yaping.MRFD method for numerical solution of wave propagation in layered media with general boundary condition.Electronics Letters, 2001, 37(20): 1267-1268.
[3]Ma, Jianwei*; Yang, Huizhu; Zhu, Yaping.Simulation of acoustic wave propagation in complex media using MRFD method.Acta Physica Sinica, 2001, 50(8): 1415-1420.
[2]Ma, Jianwei*; Zhu, Yaping; Yang, Huizhu.Multiscale-combined seismic waveform inversion using orthogonal wavelet transform.Electronics Letters, 2001, 37(4): 261-262.
[1]Li, Long; Ma, Jianwei*; Le Dimet, Francois-Xavier; Vidard, Arthur.Assimilation of Images via Dictionary Learning-Based Sparsity Regularization Strategy: An Application for Retrieving Fluid Flows.IEEE Transactions on Geoscience and Remote Sensing.
SELECTED CONFERENCES
[18]Y. Sui, X. Wang, J. Ma, Deep nonlinear seismic prior for seismic interpolation, Third International Meeting for Applied Geoscience & Energy, SEG/AAPG, Houston, USA, 2023, pp. 1515-1519.
[17]H. Zhang, J. Ma, Optimal transport with a new preprocessing for deep-learning full waveform inversion, IEEE International Conference on Image Processing (ICIP), 2022, 1446-1450
[16]W. Wang, G. McMechan, J. Ma, Elastic full wave-form inversion with recurrent neural networks, 90th SEG Annual Meeting, 2020.
[15]W. Wang, J. Ma, VMB-Net: A deep learning network for velocity model building in a cross-well acquisition geometry, 89th SEG Annual Meeting, 2019.
[14]X. Wang, J. Ma, Transform learning with group sparsity for random noise attenuation, 89th SEG Annual Meeting, 2019
[13]Y. Sui, X. Wang, J. Ma, Seismic deconvolution with weak reflection using atomic norm optimization, 89th SEG Annual Meeting, 2019.
[12]W. Wang, J. Ma, PS wavefield decomposition with CNN-learned filters, 81th EAGE Annual Meeting, 2019.
[11]L. Long, A. Vidard, F. X. Le Dimet, J. Ma, Adaptive image assimilation for 2D velocity reconstruction, AOGS 16th Annual Meeting, 2019.
[10]W. Wang, F. Yang, J. Ma, Velocity model building with a modified fully convolutional network, 88th SEG Annual Meeting, 2018, pp. 2086-2090.
[9]W. Wang, F. Yang, J. Ma, Automatic salt detection with machine learning, 80th EAGE Annual Meeting, 2018.
[8]S. Yu, J. Ma, Deep learning for attenuating random and coherence noise simultaneously, 80th EAGE Annual Meeting, 2018.
[7]S. Yu, J. Ma, Deep learning for denoising, SEG International Geophysical Conference, 2018, pp. 461-464.
[6]J. Ma, Compressed sensing based high performance computing for seismic inversion, SEG Workshop on High Performance Computing, 2016, pp. 43.
[5]J. Ma, S. Yu, Seismic data interpolation with polar Fourier transform, SPG/SEG International Geophysical Conference, 2016, pp. 480-481.
[4]G. Tang, R. Shahidi, F. Herrmann, J. Ma, Higher dimensional blue-noise sampling schemes for curvelet-based seismic data recoery, 79th SEG Annual Meeting, 2009, pp. 191-195.
[3]X. Zhang, Z. Chen, J. Wen, J. Ma, Y. Han, J. Villasenor, A compressive sensing reconstruction algorithm for trinary and binary sparse signals using pre-mapping, Data Compression Conference (DCC), 2011, pp. 203-212.
[2]J. Xu, J. Ma, D. Zhang, Y. Zhang, S. Lin, Compressive video sensing based on user attention model, 28th Picture Coding Symposium (PCS), 2010, pp. 90-93.
[1]F. Le Dimet, A. Antoniadis, J. Ma, I. Herlin, E. Huot, J. Berroir, Assimilation of images in geophysical models, International Science and Technology for Space, 2006.
INVITED BOOK CHAPTER
[2]J. Ma, A. S. Khwaja, M. Y. Hussaini, Compressed remote sensing, in Signal and Image Processing for Remote Sensing (Editor by Chi H. Chen), the second version, 2012, 73-90.
[1]G. Plonka, J. Ma, Curvelets, in Encyclopedia of Applied and Computational Mathematics (Editor by Bjorn Engquist), Springer Berlin, 2013.
发表中文期刊论文:
[29]丁超,马坚伟. 基于弹性反射波正演表达的转换波逆时偏移与反偏移[J]. 地球物理学报, 2024, 67 (09): 3496-3509.
[28]丁超, 马坚伟. 基于逆散射成像条件的转换波弹性波动方程自动偏移速度分析[J]. 石油物探, 2023, 62 (04): 645-654+668.
[27]于四伟, 杨午阳, 李海山, 王晓静, 马坚伟*. 基于深度学习的地震散射面波智能压制方法[J]. 科学通报, 2021, 66 (18): 2343-2354.
[26]袁焕, 胡自多, 刘朝, 马坚伟, 王鹏飞. 基于经验曲波变换的面波压制方法(英文)[J]. Applied Geophysics, 2018, 15 (01): 111-117+149-150.
[25]马坚伟. 压缩感知走进地球物理勘探[J]. 石油物探, 2018, 57 (01): 24-27.
[24]马坚伟, 徐杰, 鲍跃全, 于四伟. 压缩感知及其应用:从稀疏约束到低秩约束优化[J]. 信号处理, 2012, 28 (05): 609-623. 邀请综述
[23]唐刚, 马坚伟, 杨慧珠. 基于学习型超完备字典的地震数据去噪(英文)[J]. Applied Geophysics, 2012, 9 (01): 27-32+114-115.
[22]刘炯, 巴晶, 马坚伟, 杨慧珠. 随机孔隙介质中地震波衰减分析[J]. 中国科学:物理学 力学 天文学, 2010, 40 (07): 858-868.
[21]刘炯, 马坚伟, 杨慧珠. White球状Patchy模型中纵波传播研究[J]. 地球物理学报, 2010, 53 (04): 954-962.
[20]田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟(英文)[J]. Applied Geophysics, 2010, 7 (01): 57-65+99-100.
[19]田迎春, 章梓茂, 赵成刚, 马坚伟, 杨慧珠. 黏弹性流体饱和孔隙介质动力反应分析的显式有限元法[J]. 科学技术与工程, 2010, 10 (05): 1112-1117.
[18]刘炯, 马坚伟, 杨慧珠. 周期成层Patchy模型中纵波的频散和衰减研究[J]. 地球物理学报, 2009, 52 (11): 2879-2885.
[17]刘炯, 马坚伟, 杨慧珠. SH波场中完全匹配层吸收边界研究(英文)[J]. Applied Geophysics, 2009, 6 (03): 267-274+300-301.
[16]田迎春, 章梓茂, 马坚伟, 杨慧珠. 黏弹性双相介质参数反演的同伦方法[J]. 地球物理学报, 2009, 52 (09): 2328-2334.
[15]单昊, 马坚伟, 杨慧珠. 自适应全尺度小波数字图像水印[J]. 清华大学学报(自然科学版), 2009, 49 (05): 749-754.
[14]单昊, 马坚伟, 杨慧珠. 自适应全尺度小波数字图像水印[J]. 清华大学学报(自然科学版)网络.预览, 2009, 49 (05): 137-142.
[13]刘炯, 马坚伟, 杨慧珠, 巴晶. 缝洞型储层错格伪谱法模拟[J]. 石油地球物理勘探, 2008, 43 (06): 723-727+611+742.
[12]胡彬, 唐刚, 马坚伟, 杨慧珠. 基于VSP直达波资料的 粘弹介质参数遗传算法反演(英文)[J]. Applied Geophysics, 2007, (03): 194-200+244-245.
[11]马坚伟,杨慧珠. MULTIRESOLUTION SYMPLECTIC SCHEME FOR WAVE PROPAGATION IN COMPLEX MEDIA[J]. Applied Mathematics and Mechanics(English Edition), 2004, (05): 573-579.
[10]马坚伟,杨慧珠. 多尺度辛格式求解复杂介质波传问题[J]. 应用数学和力学, 2004, (05): 523-528.
[9]马坚伟,朱亚平,杨慧珠. 二维地震波形小波多尺度反演[J]. 工程数学学报, 2004, (01): 109-113.
[8]马坚伟,杨慧珠. 插值小波自适应求解层状介质波传问题[J]. 工程力学, 2003, (01): 86-90.
[7]马坚伟,杨慧珠. 小波基方法在波传问题中的应用[J]. 应用力学学报, 2002, (04): 26-30+159.
[6]马坚伟,朱亚平,杨慧珠,徐新生. 多尺度有限差分方法求解波动方程[J]. 计算力学学报, 2002, (04): 379-383.
[5]马坚伟,徐新生,杨慧珠,钟万勰. 基于哈密顿体系求解空间粘性流体问题[J]. 工程力学, 2002, (03): 1-5+9.
[4]马坚伟,徐新生,杨慧珠,钟万勰. 平面粘性流体扰动与哈密顿体系[J]. 应用力学学报, 2001, (04): 82-86+157.
[3]马坚伟,朱亚平,杨慧珠. 基于褶积模型的多尺度联合反演问题[J]. 石油地球物理勘探, 2001, (04): 433-437+516.
[2]马坚伟,杨慧珠,朱亚平. 多尺度有限差分法模拟复杂介质波传问题[J]. 物理学报, 2001, (08): 1415-1420.
[1]马坚伟,杨慧珠,朱亚平. 地震波形多尺度反演的一点讨论[J]. 地球物理学进展, 2000, (04): 55-61.
发表会议论文 :
[19]李晓彤 & 马坚伟. (2023). 基于二次神经元网络的地震数据随机噪声衰减. (eds.) 2023年中国地球科学联合学术年会论文集——专题二十六 应用地球物理前沿、专题二十七 油气田与煤田地球物理勘探 (pp.30-33).
[18]杨芳舒 & 马坚伟. (2023). Physics-informed wavelet implicit neural learning for isotropic elastic full-waveform inversion. (eds.) 2023年中国地球科学联合学术年会论文集——专题十五 智能物探与智能油气田关键技术、专题十六 海洋地球物理 (pp.56-57).
[17]王猛, 马坚伟 & 林荣智. (2023). 基于二次神经元的地震数据线性相干噪声压制. (eds.) 2023年中国地球科学联合学术年会论文集——专题十五 智能物探与智能油气田关键技术、专题十六 海洋地球物理 (pp.43-46).
[16]隋宇涵, 杜越, 周彤 & 马坚伟. (2022). 基于采样策略的自监督学习在地震去噪中的应用. (eds.) 2022年中国石油物探学术年会论文集(下册) (pp.474-477).
[15]孙慧敏, 刘朝 & 马坚伟. (2021). 迁移辅助的无监督学习地震数据去噪. (eds.) 2021年中国地球科学联合学术年会论文集(五)—专题十三 无人机地球物理技术、专题十四 地球物理人工智能和信息技术进展、专题十五 智能物探 (pp.154-156).
[14]李燕梅, 王文龙 & 马坚伟. (2021). 基于最优输运与循环神经网络的全波形反演. (eds.) 2021年中国地球科学联合学术年会论文集(五)—专题十三 无人机地球物理技术、专题十四 地球物理人工智能和信息技术进展、专题十五 智能物探 (pp.157).
[13]马坚伟 & 杨芳舒. (2018). 深度学习地球物理反演. (eds.) 2018年中国地球科学联合学术年会论文集(二十九)——专题59:计算地球物理方法和应用、专题60:地热资源成因新理论与综合探测新技术 (pp.3-5).
[12]于四伟 & 马坚伟. (2018). 基于深度学习的地震噪声压制. (eds.) CPS/SEG北京2018国际地球物理会议暨展览电子论文集 (pp.450-453).
[11]于四伟 & 马坚伟. (2017). 基于低维流形的地震强噪声衰减. (eds.) 2017中国地球科学联合学术年会论文集(二十二)——专题45:深地资源地震波勘探理论、方法进展 (pp.11-14).
[10]王文龙 & 马坚伟. (2017). 基于局部低秩近似的各向异性弹性波场分离. (eds.) 2017中国地球科学联合学术年会论文集(二十二)——专题45:深地资源地震波勘探理论、方法进展 (pp.55-58).
[9]马坚伟 & 于四伟. (2016). 基于极坐标傅里叶变换的抗假频插值. (eds.) SPG/SEG北京2016国际地球物理会议电子文集 (pp.507-509+1240-1241).
[8]贾永娜, 于四伟, 刘丽娜 & 马坚伟. (2015). 基于快速矩阵降秩的三维地震数据重建. (eds.) 中国石油学会2015年物探技术研讨会论文集 (pp.36-39).
[7]马坚伟 & 于四伟. (2014). 基于数据驱动紧框架的高维地震数据重构. (eds.) 2014年中国地球科学联合学术年会——专题18:油藏地球物理论文集 (pp.18-20).
[6]马坚伟 & 王静. (2012). 剪切波稀疏约束和矩阵低秩约束的地震数据重构. (eds.) 中国地球物理2012 (pp.499).
[5]马坚伟. (2011). 稀疏促进地震勘探. (eds.) 中国地球物理学会第二十七届年会论文集 (pp.101-102).
[4]马坚伟, 唐刚 & 汤文. (2011). 基本曲波变换和压缩感知的不完备地震数据恢复. (eds.) 中国地球物理学会第二十七届年会论文集 (pp.617).
[3]马坚伟 & 孙兵兵. (2011). 三维曲波变换地震偏移. (eds.) 中国地球物理学会第二十七届年会论文集 (pp.804).
[2]唐刚, 马坚伟 & 杨慧珠. (2009). 压缩采样及其在地震数据处理中的应用. (eds.) 中国地球物理·2009 (pp.610).
[1]马坚伟. (2009). 曲波变换和压缩采样在地震勘探中的成就和前景. (eds.) 中国地球物理·2009 (pp.89).
学术交流:
1.2009年,主办了第二届应用地球物理会议。
2.2013年,主办了信号处理、优化和压缩感知国际会议。
3.2015年和Mauricio Sacchi, Sergey Fomel, Ru-Shan Wu三位著名教授共同组织了数学地球物理国际会议。
5月18日,哈尔滨工业大学“龙江学者”特聘教授、数学系副系主任马坚伟教授在武培A104教室为地物学院师生作题为“地震数据的稀疏表示、插值、去噪”的学术报告。
报告以数学理论为基础讲述了小波变换、曲波变换和紧框架等方法对地震数据进行插值及去噪处理技术、张量结构数据驱动紧框架字典学习方法等方面的前沿技术,这些技术突破了Nyquist采样定理限制,使地震资料采集灵活性变强,对地震资料采集和不完整数据重建都有重要指导意义。
地物学院部分师生听取报告并就一些热点问题与马教授进行了深入讨论和交流。
马坚伟,2002年在清华大学 地震波勘探开发研究所获博士学位后,目前为哈尔滨工业大学“龙江学者”特聘教授、数学系副系主任。主要从事应用数学和地震勘探的交叉学科研究,基于稀疏变换和压缩感知,提出降低数据采集成本和提高数据分辨率的理论技术。(谢兴兵 许辉群 一晨)
来源:中国高校之窗 2015-5-20
荣誉奖励:
曾获得国家杰出青年科学基金(2016)、国家万人计划领军人才(2017)、科技部中青年科技创新人才(2017)、中组部首届青年拔尖人才(20111)、教育部新世纪优秀人才(2011)、中国百篇最具影响国际论文(2010)、中国地球物理学会傅承义青年科技奖(2011)、中国地球物理科技创新二等奖(2018)、黑龙江省自然科学一等奖(2019)。
1、CGS Science and Technology Progress Awards (second prize), 2022
2、Natural Science of Heilongjiang Province (first prize), 2019
3、CGS Technology Innovation Awards (second prize), 2018
4、Wanren Jihua, 2017
5、NSFC Distinguished Young Scholar, 2016
6、National Youth Talent Support Program, 2011
7、Longjiang Chair Professor, 2011
8、New Century Excellent Talents by Ministry of Education of China, 2011
9、Cheng-Yi Fu Awards by Chinese Geophysical Society (CGS), 2011,
10、China Top 100 Most Impact Papers Published in International Journals, 2010
附:
应用数学研究所马坚伟教授荣获2011年度“傅承义青年科技奖”
2011年度“傅承义青年科技奖”五位获奖者。马坚伟教授(后排右二)
2011年10月18日至21日,中国地球物理学会第27届年会在湖南长沙召开。会上我校应用数学研究所所长马坚伟教授荣获2011年度“傅承义青年科技奖”,系我校首次获得的中国地球物理学界年度大奖。马坚伟教授受邀作了题目为“稀疏促进地震勘探”的大会报告。
中国地球物理学会作为我国地球物理领域规模最大、最具权威的学术团体,此次第27届学术年会的召开,吸引了来自我国地震、石油、国土系统的科研院所、生产单位以及港澳台地区的1000多名专家与学者参加。傅承义是国际地震波传播理论研究的先驱者之一,我国地球物理科学的主要奠基人。傅承义青年科技奖每年颁发一次,授予过去5年在地球物理学科做出突出成绩的1-5名青年学者(45岁以下)。
马坚伟教授,1976年12月出生于浙江,2002年8月在清华大学获得博士学位。2002-2006年在剑桥大学等欧洲高校从事博士后研究,2006-2010年在清华大学航天航空学院工作,2010-2011在美国佛罗里达州立大学工作,2011年7月入职哈尔滨工业大学百人计划教授岗位,并担任应用数学研究所所长。获得2011年第十届黑龙江省青年科技奖。从事研究兴趣为稀疏变换、压缩感知、图像处理、地震油气勘探和航天遥感成像。发表SCI期刊论文50余篇,国际期刊Int. J. Artificial Intel. 和J. Signal Inform. Process. 编委,第二届应用地球物理会议主席。近期在IEEE Signal Processing Magazine(影响因子5.86)等著名期刊上撰写邀请综述论文3篇,另外撰写关于压缩感知遥感成像的邀请书章一篇。作为项目负责人承担了国家自然科学基金、航天创新基金、中石油集团风险基金等8个项目,作为核心技术骨干参加了973项目子课题。
来源: 哈尔滨工业大学理学院 2011/11/14
马坚伟教授的论文入选2010年度中国百篇最具国际影响力的学术论文
我校应用数学研究所所长马坚伟教授的论文入选2010年度中国百篇最具国际影响力的学术论文。
根据中国科学技术信息研究所,12月上旬发布的数据,综合论文的创新性、发表论文的期刊水平、是否处于研究前沿、论文的合作强度、论文的文献类型、论文的参考文献类型、论文的国际知名度等指标,兼顾学科分布,从表现不俗的SCI论文中,评选出2010年百篇最具影响的国际学术论文。 清华大学共5篇入选,黑龙江省1篇入选。马坚伟教授此次入选的论文为: J. Ma, G. Plonka, The curvelet transform, IEEE Signal Processing Magazine, 2010, 27 (2), 118-133。
马坚伟教授,1976年12月出生于浙江东阳,2002年8月在清华大学获得博士学位。2002-2006年在剑桥大学等欧洲高校从事博士后研究,2006-2010年在清华大学航天航空学院工作,2010-2011在美国佛罗里达州立大学工作,2011年7月入职哈尔滨工业大学百人计划教授岗位,并担任应用数学研究所所长。获得2011年中国地球物理学会傅承义奖,第十届黑龙江省青年科技奖,入选教育部新世纪优秀人才支持计划。从事研究兴趣为稀疏变换、压缩感知、图像处理、地震油气勘探和航天遥感成像。发表IEEE Transactions,SIAM J.等SCI期刊论文50余篇。
时间:2011-12-20
中国科技创新人物云平台暨“互联网+”科技创新人物开放共享平台(简称:中国科技创新人物云平台)免责声明:
1、中国科技创新人物云平台是:“互联网+科技创新人物”的大型云平台,平台主要发挥互联网在生产要素配置中的优化和集成作用,将互联网与科技创新人物的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态,实现融合创新,为大众创业,万众创新提供智力支持,为产业智能化提供支撑,加快形成经济发展新动能,促进国民经济提质增效升级。
2、中国科技创新人物云平台暨“互联网+”科技创新人物开放共享平台内容来源于互联网,信息都是采用计算机手段与相关数据库信息自动匹配提取数据生成,并不意味着赞同其观点或证实其内容的真实性,如果发现信息存在错误或者偏差,欢迎随时与我们联系,以便进行更新完善。
3、如果您认为本词条还有待完善,请编辑词条。
4、如果发现中国科技创新人物云平台提供的内容有误或转载稿涉及版权等问题,请及时向本站反馈,网站编辑部邮箱:kjcxac@126.com。
5、中国科技创新人物云平台建设中尽最大努力保证数据的真实可靠,但由于一些信息难于确认不可避免产生错误。因此,平台信息仅供参考,对于使用平台信息而引起的任何争议,平台概不承担任何责任。