专家信息:
吴超,男,西安交通大学前沿科学技术研究院材料物理中心教授,电子结构研究小组组长。
教育经历:
2009 博士 韦恩州立大学(美国) 物理化学(导师Vladimir Y. Chernyak教授)
2004 硕士 大连理工大学 应用化学 (导师刘志广教授)
2001 学士 大连理工大学 化学工程与工艺,英语。
工作经历:
2016- 今 副教授 西安交大 前沿院 材料物理中心
2017-2018 美国 爱荷华州立大学 访问学者 (导师 Mark S. Gordon教授)
2012-2016 电子结构研究小组组长 西安交大 前沿院 材料物理中心
2009-2012 博士后 美国 圣母大学(导师William F. Schneider教授)。
研究领域: 计算材料学/计算化学,即基于电子结构的多尺度模拟
研究方向:
1、分离材料(二维多孔材料和枝状材料);
2、多相反应(利用覆盖度效应与弹性应变工程调节);
3、计算的自动化,数据挖掘。
评阅人:
中国自然科学基金(青年、重大项目); 无机材料学报; 物理学报; ACS Applied Materials & Interfaces; ACS Applied Nano Materials; ACS Catalysis; ACS Omega; ACS Sustainable Chemistry & Engineering; AIChE Journal; Advanced Functional Materials; Applied Surface Science; Chemical Physics; ChemistrySelect; ChemSusChem; Cogent Physics; Computational and Theoretical Chemistry; Environmental Science & Technology; Fuel Processing Technology; Industrial & Engineering Chemistry Research; International Journal of Hydrogen Energy; Journal of the American Chemical Society; Journal of Materials Science & Technology; Journal of Molecular Liquids; Journal of Molecular Modeling; Journal of Physical Chemistry B; Journal of Physical Chemistry C; Langmuir; Materials Research Bulletin; Materials Science in Semiconductor Processing; Molecular Catalysis; Molecular Physics; Nano Letters; New Journal of Chemistry; Physical Chemistry Chemical Physics; RSC Advances; Small; Tetrahedron.
主讲课程:Lecture Course
2023春季,本科生经典阅读课程《〈天朝的崩溃〉导读》16学时,主讲;研究生《计算仿真科学》32学时,(王栋主讲)参与6学时。
2022秋季,化生班《计算化学》32学时,主讲;研究生,Electronic structure of molecules,32学时,主讲。
2022春季,研究生《计算仿真科学》32学时,(王栋主讲)参与6学时。
2021秋季,化生班《计算化学》32学时,主讲;研究生,Electronic structure of molecules,32学时,主讲。
2021春季,研究生《计算仿真科学》32学时,(王栋主讲)参与6学时。
2020秋季,化生班《计算化学》32学时,主讲;研究生《分子的电子结构》32学时,主讲。
2019秋季,化生班《计算化学》32学时,主讲;研究生《量子化学基础》32学时,主讲。
2019春季,研究生《专业英语(小班)》16学时(鲁广昊主讲),参与4学时。
2018秋季,化生班《计算化学》32学时,主讲。
2016秋季,材料学院研究生《计算材料学2》32学时(缑高阳主讲),参与10学时;前沿院研究生《材料前沿进展》32学时(杨耀东主讲),参与6学时。
2015秋季,材料学院研究生《计算材料学2》32学时(王昭主讲),参与8学时;前沿院研究生《材料前沿进展》32学时(杨耀东主讲),参与4学时。
2014秋季,材料学院研究生《计算材料学2》32学时(王昭主讲),参与8学时;前沿院研究生《材料前沿进展》32学时(杨耀东主讲),参与4学时。
2013秋季,前沿院研究生《材料前沿进展》32学时(杨耀东主讲),参与2学时。
Customization(Multiple Times)
《量子化学原理》
1.《波函数的动能算符与体积元的正确表达》(pdf版)(mathematica版)
2.《动能算符相关问题》(pdf版)(mathematica版)
1、为什么薛定谔方程的动能项前面有个负号?
2、波函数的曲率、斜率越大动能越高?动能是局域性质吗?
3、量子力学又允许电子进入经典力学的“禁止(动能为负的)区域”,如何理解?
3.《平面波的空间和时间部分中间为何有个负号?》(pdf版)(mathematica版)
《研究生专业英语》之《科技英语(小班)实践——本质不关乎英语》 2019春季PPT
培养研究生情况:
博士生:
贾辰凌,2021/09,分子计算的自动化及其应用:取代基效应
马木提江,2019/09,缺陷对二维硫族化合物催化NRR的影响
冯超,2019/09,分子计算的自动化及其应用:配体对催化剂的影响
海鹏起,2020/03,(2018/09-2020/02硕士,与丁向东联合指导),主族元素的反常覆盖率效应
博士后:
何玉成,2019/02,应变敏感的金属、主族元素在过渡金属中的掺杂
毕业博士研究生:
李尘晨(博士毕业,多位点酸气捕获材料的设计,2016/09-2021/03,去向:西安工业大学)
令狐遥遥(博士毕业,二硫化钼表面小分子行为以及应变调控,2017/09-2020/09,去向:中北大学)
李院珍 (博士毕业,二维多孔膜的分离性能的可逆调控,2016/11-2020/09,去向:宁夏大学)
刘福柱(博士毕业,应变表面分子共吸附的研究,与杨生春联合指导,2014/09-2020/07,2017/11-2019/11在美国佐治亚理工交流),去向:西安交通大学材料学院)
张丽英(博士毕业,多孔石墨烯作为分离材料的研究,与丁向东联合指导,2015/07-2018/12,去向:岭南师范学院)
薛甜甜(硕士毕业,铂表面应变对于氧气分解的影响,与丁向东联合指导,2015/09-2018/06,去向:苏州博世)
吴怡(硕士毕业,液晶材料自组装行为,与丁向东、刘峰联合指导,2015/09-2018/06,去向:深圳的公司)
唐华蓉(博士毕业,气体分离材料设计,与丁向东联合指导,2013/09-2016/06,去向:四川大学国际关系学院;科研助理 2012/05-2013/09)
刘巧(硕士毕业,表面催化,与丁向东联合指导,2013/09- 2016/06,去向:创业;科研助理2013/05-2013/09)
郭辰(硕士毕业,液晶材料自组装行为,与刘峰联合指导,2013/09-2016/06,去向:上海的咨询公司;科研助理2013/05-2013/09)
张赟(硕士毕业,气体分离材料合成与测量,与吕东梅联合指导,2013/09-2016/06,去向:华为)
侯秀芳(博士后,均相催化剂设计,2012/08- 2014/08,去向:延安大学化学与化工学院,讲师)
霍卫光(科研实习生,物理系实验班本科生,磁性材料,2013.5-2014.5,去向:普林斯顿大学,研究生)
王蔚熙(暑期实习生,西安交大钱学森13班,2013.7)
杨顶峰(科研助理2012.7-2013.7,去向:重庆大学,博士研究生)
任新志(科研助理2012.7-2013.2,去向:IT公司)
陈思成(暑期实习生,西安交大钱学森12班,2012.7)
Research Fields:
计算化学、计算材料学:基于电子结构(第一原理方法)的多尺度模拟。
研究方向:1、多相反应;2、气体分离;3、计算自动化;4、交互教学软件。
1、多相反应
(1)、应变工程(Strain Engineering)
吸附(局部事件)对应变(全局事件)的响应可能是非线性的甚至是非单调性的(吸附强度可增可减);发现拉伸应变利于CO在Pt表面的氧化。 CO Oxidation over Strained Pt(100) Surface: A DFT Study. Journal of Physical Chemistry C, 2015, 119 (27), 15500–15505.
吸附物可以分为:对应变敏感的和对应变不敏感的两类。对于对应变不敏感的吸附物,来自金属掺杂和异质结的配体效应会更明显。Strain and Ligand Effects on CO2 Reduction Reactions over Cu–Metal Heterostructure Catalysts. Journal of Physical Chemistry C, 2017, 121 (40), 22139–22146.
作为催化剂的金属可以分为:对应变敏感的和对应变不敏感的两类。对于对应变敏感的金属,在吸附物和应变的共同作用下,会呈现大的能量(吸附物结合能)和结构的变化(金属原子突起),影响后续反应。Dissociative adsorption of O2 on strained Pt(111). Physical Chemistry Chemical Physics, 2018, 20, 17927-17933; Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters, 2019, 722, 18-25. Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.
(2)、覆盖度效应(Coverage Effect)
任一覆盖度下催化剂表面上都会有大量的局部微反应环境(构型),极少数构型(即< 5%的表面积)决定总的反应速率;推论:重要的往往是少数派。Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111). Journal of Catalysis 2012, 286 (7), 88-94.
贵金属的主族元素掺杂(PdCx)。稳定结构单元Pd6C的配位方式以及C-C之间各向同性的近距离排斥导致C只在Pd的奇数层均匀分布,偶数层几乎没有。Equilibrium distribution of dissolved carbon in PdCx: DFT and Canonical Monte Carlo simulations. Journal of Physical Chemistry C, 2021, 125, 38, 20930–20939.
反常的覆盖度效应(O在Al表面),O-O在Al表层和层间都呈现明显的、各向同性的吸引作用,即随着O的覆盖度增加O与Al的结合增强。同时,O在Al团簇吸附的优先位点为配位数多的面上的Al原子而非顶点、边上的Al原子。A comparative DFT study of the oxidation of Al crystals and nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 24004-24015.
2、气体分离
(1)、二维多孔分离材料
材料的柔性对分离效果影响巨大。 Computational Design Porous Graphenes for Alkane Isomer Separation. Journal of Physical Chemistry C 2017, 121 (18), 10063-10070.
大的刚性孔洞的透过效率可能会低于小的柔性孔洞。Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes. Physical Chemistry Chemical Physics, 2018, 20, 18192-18199.
门控材料 (Gated Materials):利用强吸附(弱共价键)可逆地调节多孔材料的分离性能。Utilizing SO2 as self-installing gate to regulate the separation properties of porous graphenes. Carbon, 2018, 134, 145-152. Functional group-directed self-installing doors in porous graphene: a theoretical study. Journal of Materials Science, 2020, 55(12), 5111-5122. Separation Properties of Porous MoS2 Membranes Decorated with Small Molecules. ACS Applied Materials & Interfaces, 2020, 12, 17, 20096–20102.
孔洞修饰(官能团的种类、数量、构型)对孔洞分离性质带来巨大的不确定性。 Uncertainty in the separation properties of functionalized porous graphenes. Applied Surface Science, 2020, 525, 146524.
孔洞在小的拉应变(< 3%双轴或6%单轴)作用下呈现反直觉的分离性质:同一分子的穿透能垒升高。Porous graphene membranes under small tensile strains exhibit higher percolation barriers to the passing molecules. Surfaces and Interfaces, 2021, 27, 101526.
(2)、小分子在二维材料上的吸附、反应
1T相的二硫化钼在表面吸附原子(基团)后会变为更稳定的1T’相。Ligand induced structure and property changes of 1T-MoS2. Physical Chemistry Chemical Physics, 2019, 21, 9391 - 9398.
1T’相的二硫化钼对于NOx的吸附较强且受应变调节明显。1T’-MoS2, A Promising Candidate for Sensing NOx. Journal of Physical Chemistry C, 2019, 123, 10339−10345.
一系列小分子在有缺陷的2H和1T’相的二硫化钼上的吸附、分解。Gas Molecules on Defective and Nonmetal-Doped MoS2 Monolayers. The Journal of Physical Chemistry C, 2020, 124(2), 1511-1522. NO disproportionation over defective 1T′-MoS2 monolayers. Physical Chemistry Chemical Physics, 2020, 22, 13154-13159. NO Electroreduction by Transition Metal Dichalcogenides with Chalcogen Vacancies. ChemElectroChem, 2021, 8, 3113-3122. Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Physical Chemistry Chemical Physics, 2021, 23, 19872-19883. CO oxidation over defective and nonmetal doped MoS2 monolayers. Journal of Physics: Condensed Matter, 2021, 33, 165002. The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T'-MoS2 monolayers. Applied Surface Science, 2022, 153001.
(3)、酸性气体的吸收与分离
确定了单个作用位点在“吸收—解吸”循环中的最佳作用强度(即反应焓变)和每循环最大有效吸收值;按照该作用强度目标寻找最佳的吸收材料。First-principles-guided design of ionic liquids for CO2 capture. Physical Chemistry Chemical Physics 2012, 14 (38), 13163-13170.
证明带单位电荷的阴离子,无论有多少反应位点,最多能够等摩尔地化学吸收。Reactivity of Azole Anions with CO2 from the DFT Perspective. ChemSusChem 2013, 6 (6), 1050-1056.
证明离子液体与CO2反应可能是离子液体(被CO2)活化后的反应,机理不再是单纯的酸碱作用。Multi-molar CO2 capture beyond the direct Lewis acid–base interaction mechanism. Physical Chemistry Chemical Physics, 2020, 22, 11354-11361.
发展了以硼为中心的枝状多位点SO2吸收离子液体。Synthesis and characterization of imidazolium poly(azolyl)borate ionic liquids and their potential application in SO2 absorption. RSC Advances 2016, 6 (70), 66078-66086.
设计了枝状多位点SO2吸收材料;发现了新的吸收材料与SO2的作用模式(插入模式)。Designing tri-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics, 2018, 20 (24), 16704-16711.
利用光控制吸收材料的构型,带来吸收强度的变化。Intramolecular Hydrogen Bonds Enhance Disparity in Reactivity between Isomers of Photoswitchable Sorbents and CO2: A Computational Study. ChemPhysChem 2015, 16 (9), 1926-1932.
阳离子对CO2和SO2吸收的影响。The role of cations in the interactions between anionic N-heterocycles and SO2. Scientific Reports, 2018, 8 (1), 7284; Cation-assisted interactions between N-heterocycles and CO2. Physical Chemistry Chemical Physics 2015,17, 15725-15731.
3、计算自动化、数据挖掘、化学信息学
针对柔性枝状大分子与小分子作用,发展了精度递进的自动化构型搜索方法。Exploration of tetra-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics, 2019, 21, 18250-18258.
利用自动化计算筛选苛刻条件下SO2吸收材料。A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature. Journal of Industrial and Engineering Chemistry, 2021, 98, 161-167.
4、化学教育中的交互软件开发
刘志广*,吴超,张永策,韩梅. 三维交互网络虚拟原子吸收实验室的构建.《计算机与应用化学》, 2002,19(4): 492-494.
刘志广*,岳锌,吴超,张永策,王栋. 三种网络虚拟实验室的实现方法与比较.《计算机与应用化学》, 2003, 20(1): 91-93.
承担科研项目情况:
1. 西安交通大学启动资金 (2012.3-2017.2)。
2. 国家自然科学基金(青年)项目,用激发子散射方法研究新型低维共轭分子体系的电子激发态 (2013.1-2015.12) 21203143。
3. 国家自然科学基金(面上)项目,设计利用光调控吸着强度的CO2捕获材料(2015.1-2018.12)21477096。
4、西安交通大学基本科研业务费 应变与电子效应对金属催化剂活性的调控研究 2017.1-2019.12,xjj2017173. “中央高校基本科研业务费专项资金资助”(supported by“the Fundamental Research Funds for the Central Universities”)
5、国家自然科学基金(面上)枝状多位点两性CO2捕获离子液体的理论与实验研究 2022.1-2025.12, 22176152
科研成果:
1. 关于复杂有机共轭体系的电子激发态的理论突破,针对这一问题,在与博士导师光谱学家Vladimir Y. Chernyak 教授等人的合作中,吴超参与提出并发展了描述共轭有机体系中电子激发态的激发子散射方法,该方法解决了计算超大分子体系电子激发态的难题。激发子散射方法将电子激发态表述为激发子在分子内传播以及其在节点处散射的行为,从而能够精确描述复杂体系的激发态。激发子散射方法的定性描述最初发表于国际物理领域顶尖杂志《自然•物理》上,该杂志的新闻与评论专栏在第一时间特约理论化学物理学家Eric R. Bittner 教授对这一理论突破进行了专文评论与解读。在数年内,这篇文章已经被广泛引用。著名实验光谱学家Gregory D. Scholes 在一篇综述中这样评价“吴等研究人员最近发表了一种通过复杂的方式连接结构单元的方法,该方法能够预测纳米尺度系统的性质。该工作的优美之处在于通过概念上简洁的方法描述复杂体系的复杂过程”。
2. 他发展了一套基于第一原理的综合方法,该方法能够系统的、准确的、定量处理覆盖率对于催化剂表面反应动力学的影响。是对于表面反应动力学研究方法的重要贡献。吴超提出并发展了一套基于第一原理的基反应位方法能够有效地解决上述问题。该方法综合使用了密度泛函理论,簇展开方法,巨正则系综蒙特卡罗方法和基于统计力学的分析方法。依据该方法,研究者可以避免在设定平均场作用时走入以前的误区。这一方法已经在多次国际会议和校际学术交流中进行了报告,总结成的论文在本方向的权威杂志《催化学报》上发表。
代表性英文论文:共87篇SCI收录文章。Web of Science(A-5104-2015), 被引用1790次 H指数24, + equal contributor, * correspondence author.
87. Ali, A.; Chen, L.; Nasir, M. S.; Wu, C.; Guo, B.; Yang, Y.*, Piezocatalytic removal of water bacteria and organic compounds: a review. Environmental Chemistry Letters, 2022, https://link.springer.com/article/10.1007/s10311-022-01537-3.
86. Yin, J. +; Hai, P. +; Gao, Y.; Gan, Z.; Wu, C.*; Cheng, Y.*; Xu, X.*, Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage. Nano Research, https://doi.org/10.1007/s12274-022-5120-x.
85. Liu, F.; Wu, C.*; Ding, X.*; Sun, J., Atomic modification of Mo(100) surface for corrosion resistance. Applied Surface Science, 2023, 610,155509.
84. Linghu, Y.*; Tong, T.; Wu, C.*, Cu-doped MoSi2N4 monolayer as a highly efficient catalyst for CO reduction toward C2+ products. Applied Surface Science, 2023, 609, 155332.
83. Tursun, M.; Wu, C.*, Single Transition Metal Atoms Anchored on Defective MoS2 Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine. Inorganic Chemistry, 2022, https://doi.org/10.1021/acs.inorgchem.2c02247.
82. Gao, Y. +; Hai, P. +; Liu, L.; Yin, J.; Gan, Z.; Ai, W.; Wu, C.*; Cheng, Y.*; Xu, X.*, Balanced Crystallinity and Nanostructure for SnS2 Nanosheets through Optimized Calcination Temperature toward Enhanced Pseudocapacitive Na+ Storage. ACS Nano, 2022, 16, 9, 14745–14753.
81. Zhang, K.; He, Y.; Guo, R.; Wang, W.; Zhan, Q.; Li, R.; He, T.; Wu, C.*; Jin, M.*, Interstitial Carbon-Doped PdMo Bimetallene for High-Performance Oxygen Reduction Reaction. ACS Energy Letters, 2022, 7, 10, 3329–3336.
80. Hai, P.; Wu, C.*; Ding, X.*, NOx on Al: The Unusual Adsorption Site Preference and the Attraction among Adsorbates. Journal of Physical Chemistry C, 2022, 126, 29, 11971–11980.
79. Chen, Y.; Yan, H.; Liao, Q.*; Zhang, D.; Lin, S.; Hao, E.*; Murtaza, R.; Li, C.; Wu, C.; Duan, C.; Shi, L.*, Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angewandte Chemie International Edition, 2022, 61, e202204516.
78. Tursun, M.; Wu, C.*, Electrocatalytic Reduction of N2 to NH3 Over Defective 1T '-WX2 (X=S, Se, Te) Monolayers. ChemSusChem, 2022, 15, 11, e202200191.
77. Tong, T.; Linghu, Y.*; Wu, G.; Wang, C.; Wu, C.*, Nitric oxide electrochemical reduction reaction on transition metal-doped MoSi2N4 monolayers. Physical Chemistry Chemical Physics, 2022, 24, 18943-18951.
76. Linghu, Y.*; Tong, T.; Li, C.; Wu, C.*, The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T'-MoS2 monolayers. Applied Surface Science, 2022, 590, 153001.
75. He, Y.; Hai, P.; Wu, C.*, Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.
74. Ding, X.; Luo, Q.; Zhai, Y.; Zhang, X.; Lv, Y.; Zhang, X.; Ke, C.; Wu, C.; Zheng, Y.*, Rigid Dysprosium(III) Single-Molecule Magnets Exhibit Preserved Superparamagnetism in Solution. Chinese Journal of Chemistry, 2022, 40, 563-570.
73. Li, Y.; Zhang, L.; Wu, C.*, Porous graphene membranes under small tensile strains exhibit higher percolation barriers to the passing molecules. Surfaces and Interfaces, 2021, 27, 101526.
72. He, Y.; Wu, C.*, Equilibrium distribution of dissolved carbon in PdCx: DFT and Canonical Monte Carlo simulations. Journal of Physical Chemistry C, 2021, 125, 38, 20930–20939.
71. Hai, P.; Wu, C.*, A comparative DFT study of the oxidation of Al crystals and nanoparticles. Physical Chemistry Chemical Physics, 2021,23, 24004-24015.
70. Tursun, M.; Wu, C.*, Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Physical Chemistry Chemical Physics, 2021, 23, 19872-19883.
69. Tursun, M.; Wu, C.*, NO Electroreduction by Transition Metal Dichalcogenides with Chalcogen Vacancies. ChemElectroChem, 2021, 8, 3113-3122.
68. Li, C.; Lu, D.*; Wu, C.*, A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature. Journal of Industrial and Engineering Chemistry, 2021, 98, 161-167.
67. Linghu, Y.; Lu, D.*; Wu, C.*, CO oxidation over defective and nonmetal doped MoS2 monolayers. Journal of Physics: Condensed Matter, 2021, 33, 165002.
66. Guo, R.; Zhang, K.; Liu, Y.; He, H.; Wu, C.*; Jin, M.*, Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2021, 9, 6196-6204.
65. Li, F.; Lin, S.; Chen, Y.; Shi, C.; Yan, H.; Li, C.; Wu, C.; Lin, L.; Duan, C.; Shi, L.*, Photocatalytic Generation of π-Allyltitanium Complexes via Radical Intermediates. Angewandte Chemie International Edition, 2021, 60, 1561-1566.
64. Wang, B.*; Xiong, L.; Hao, H.; Cai, H.; Gao, P.; Liu, F.; Yu, X.; Wu, C.*; Yang, S.*, The “electric-dipole” effect of Pt–Ni for enhanced catalytic dehydrogenation of ammonia borane. Journal of Alloys and Compounds, 2020, 844, 156253.
63. Linghu, Y.; Wu, C.*, NO disproportionation over defective 1T′-MoS2 monolayers. Physical Chemistry Chemical Physics, 2020, 22, 13154-13159.
62. Li, C.; Lu D.*; Wu, C.*, Multi-molar CO2 capture beyond the direct Lewis acid–base interaction mechanism. Physical Chemistry Chemical Physics, 2020, 22, 11354-11361.
61. Linghu, Y.; Wu, C.*, Strain engineering the behaviors of small molecules over defective MoS2 monolayers in the 2H and 1T′ phases. Journal of Materials Science, 2020, 55, 10643–10655.
60. Li, Y.; Zhang, L.; Wu, C.*, Uncertainty in the separation properties of functionalized porous graphenes. Applied Surface Science, 2020, 525, 146524.
59. Li, Y.; Linghu, Y.; Wu, C.*, Separation Properties of Porous MoS2 Membranes Decorated with Small Molecules. ACS Applied Materials & Interfaces, 2020, 12, 17, 20096–20102.
58. Li, Y.; Li, C.; Linghu, Y.; Wu, C.*, Functional group-directed self-installing doors in porous graphene: a theoretical study. Journal of Materials Science, 2020, 55(12), 5111-5122.
57. Zhan, M.+; Ding, Z.+; Du, S.+; Chen, H.; Feng, C.; Xu, M.; Liu, Z.; Zhang, M.; Wu, C.; Lan, Y.*; Li, P.*, A unified approach for divergent synthesis of contiguous stereodiads employing a small boronyl group. Nature Communications, 2020, 11(1), 792.
56. Linghu, Y.; Wu, C.*, Gas Molecules on Defective and Nonmetal-Doped MoS2 Monolayers. The Journal of Physical Chemistry C, 2020, 124(2), 1511-1522.
55. Yang, B.; Wu, C.; Wang, J.; Bian, J.; Wang, L.; Liu, M.; Du, Y.; Yang, Y.*, When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst. Ceramics International, 2019, 46(4) 4248-4255.
54. Lu, D.*; He, Y.; Wu, C.*, Electronic structure of mono(Lewis base)-stabilized borylenes. Physical Chemistry Chemical Physics, 2019, 21, 23533-23540.
53. Li, C.; Lu, D.*; Wu, C.*, Exploration of tetra-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics, 2019, 21, 18250-18258.
52. Moss, J. B.; Zhang, L.; Nielson, K. V.; Bi, Y.; Wu, C.*; Scheiner, S.*; Liu, T. L.*, Computational Insights into Mg-Cl Complex Electrolytes for Rechargeable Mg Batteries. Batteries & Supercaps, 2019, 2, 792-800.
51. Yang, B.; Bian, J.; Wang, L.; Wang, J.; Du, Y.; Wang, Z.; Wu, C.; Yang, Y.*, Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering. Physical Chemistry Chemical Physics, 2019, 21, 11697-11704.
50. Linghu, Y.; Li, N.; Du, Y.*; Wu, C.*, Ligand induced structure and property changes of 1T-MoS2. Physical Chemistry Chemical Physics, 2019, 21, 9391 - 9398.
49. Linghu, Y.; Wu, C.*, 1T’-MoS2, A Promising Candidate for Sensing NOx. Journal of Physical Chemistry C, 2019, 123, 10339−10345.
48. Liu, F.; Xue, T.; Wu, C.*; Yang, S.*, Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters, 2019, 722, 18-25.
47. Xia, Z.; Zhang, S.; Liu, F.; Ma, Y.; Qu, Y.*; Wu, C.*, Size-Dependent Adsorption of Styrene on Pd Clusters: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 2182-2188.
46.Xu, C.; Su, R.; Wang Z.; Wang, Y.; Zhang, D.; Wang, J.; Bian, J.; Wu, C.; Lou, X.; Yang, Y.*, Tuning the microstructure of BaTiO3@SiO2 core-shell nanoparticles for high energy storage composite ceramics. Journal of Alloys and Compounds, 2019, 784, 173-181.
45. Xue, T.; Wu, C.*; Ding, X.*; Sun, J., Dissociative adsorption of O2 on strained Pt(111). Physical Chemistry Chemical Physics, 2018, 20, 17927-17933.
44. Li, C.; Lu, D.; Wu, C.*, The role of cations in the interactions between anionic N-heterocycles and SO2. Scientific Reports, 2018, 8 (1), 7284.
43. Li, C.; Lu, D.; Wu, C.*, Designing tri-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics, 2018, 20 (24), 16704-16711.
42. Zhang, L.; Wu, C.*; Ding, X.*; Fang, Y.; Sun, J., Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes. Physical Chemistry Chemical Physics, 2018, 20, 18192-18199.
41. Li, Y.; Wu, C.*, Utilizing SO2 as self-installing gate to regulate the separation properties of porous graphenes. Carbon, 2018, 134, 145-152.
40. He, Y.; Que, W.*; Liu, X.; Wu, C.*, Trapping Behaviors of Photogenerated Electrons on the (110), (101), and (221) Facets of SnO2: Experimental and DFT Investigations. ACS Applied Materials and Interfaces, 2017, 9 (44), 38984-38991.
39. Liu, F.; Wu, C.*; Yang, S.*, Strain and Ligand Effects on CO2 Reduction Reactions over Cu–Metal Heterostructure Catalysts. Journal of Physical Chemistry C, 2017, 121 (40), 22139–22146.
38. Zhang, L.; Wu, C.*; Fang, Y.; Ding, X.*; Sun, J., Computational Design Porous Graphenes for Alkane Isomer Separation. Journal of Physical Chemistry C 2017, 121 (18), 10063-10070.
37. Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D.*, Electrophilicity and Nucleophilicity of Boryl Radicals. Journal of Organic Chemistry 2017, 82 (6), 2898-2905.
36. Zhang, S.; Xia, Z.; Ni, T.; Zhang, H.; Wu, C.; Qu, Y.*, Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. Journal of Material Chemistry A, 2017, 5, 3260-3266.
35. Zhang, S.; Li, J.; Xia, Z.; Wu, C.; Zhang, Z.; Ma, Y.*; Qu, Y.*, Towards highly active Pd/CeO2 for alkene hydrogenation by tuning Pd dispersion and surface properties of catalysts. Nanoscale 2017, 9, 3140-3149.
34. Shi, L.; Yang, J. H.; Zeng, H. B.; Chen, Y. M.*; Yang, S. C.; Wu, C.; Zeng, H.; Yoshihito, O.; Zhang, Q.*, Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 2016, 8, 14374-14378.
33. Li, H.; Wu, C.; Malinin, S. V.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules. Chemical Physics 2016, 481, 124-132. [Vladimir Y. Chernyak Festschrift, Tribute to Vladimir Chernyak by Shaul Mukamel]
32. Zhang, Y.; Lu, D.*; Zhang, J.-J.; Wu, C.*, Synthesis and characterization of imidazolium poly(azolyl)borate ionic liquids and their potential application in SO2 absorption. RSC Advances 2016, 6 (70), 66078-66086.
31. Yang, S.; Liu, F.; Wu, C.*; Yang, S.*, Tuning Surface Properties of Low Dimensional Materials via Strain Engineering. Small 2016, 12 (30), 4028-4047.
30. Wu, C.; Wang, H.; Zhang, J.; Gou, G.*; Pan, B.; Li, J.*, Lithium–Boron (Li–B) Monolayers: First-Principles Cluster Expansion and Possible Two-Dimensional Superconductivity. ACS Applied Materials and Interfaces 2016, 8 (4), 2526–2532.
29. Hou, X.*; Wu, C.; Li, Y.; Yang, X., The C-N coupling reaction of bimetallic cations [MAu(CH)]+(M = Pt, Ir, Os) with NH3. Computational and Theoretical Chemistry 2015, 1027, 52-57.
28. Fang, Y.; Tai, Y. Y.; Deng, J.; Wu, C.; Ding, X.*; Sun, J.; Salje, E. K. H.*, Fe-vacancy ordering in superconducting K1-xFe2-ySe2: first-principles calculations and Monte Carlo simulations. Superconductor Science and Technology 2015, 28, 095004.
27. Liu, F.; Wu, C.*; Yang, G.; Yang, S.*, CO Oxidation over Strained Pt(100) Surface: A DFT Study. Journal of Physical Chemistry C 2015, 119 (27), 15500–15505.
26. Tang, H.; Lu, D.*; Wu, C.*, Cation-assisted interactions between N-heterocycles and CO2. Physical Chemistry Chemical Physics 2015,17, 15725-15731.
25. Tang, H.; Lu, D.*; Wu, C.*, Intramolecular Hydrogen Bonds Enhance Disparity in Reactivity between Isomers of Photoswitchable Sorbents and CO2: A Computational Study. ChemPhysChem 2015, 16 (9), 1926-1932.
24. Wang, Z.; Chen, Z.; Zhang, H.; Zhang, Z.; Wu, H.; Jin, M.*; Wu, C.*; Yang, D.; Yin, Y.*, Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures. ACS Nano 2015, 9 (3), 3307-13.
23. Chen, Z.; Li, P.*; Wu, C.*, - A uniformly porous 2D CN (1 : 1) network predicted by first-principles calculations. RSC Advances 2015, 5 (16), 11791-11796.
22. Xu, X.; Yang, X.; Wu, Y.; Zhou, G.*; Wu, C.*; Wong, W.-Y.*, tris-Heteroleptic Cyclometalated Iridium(III) Complexes with Ambipolar or Electron Injection/Transport Features for Highly Efficient Electrophosphorescent Devices. Chemistry – An Asian Journal 2015, 10 (1), 252-262.
21. Chen, Y.-C.+; Qin, L.+; Meng, Z.-S.; Yang, D.-F.; Wu, C.*; Fu, Z.; Zheng, Y.-Z.*; Liu, J.-L.; Tarasenko, R.; Orendá, M.*; Prokleka, J.; Sechovsky, V.; Tong, M.-L.*, Study on a Magnetic-Cooling Material Gd(OH)CO3. Journal of Material Chemistry A, 2014, 2, 9851-9858.
20. Wei, Y.+; Tang, H.+; Cong, X.; Rao, B.; Wu, C.*; Zeng, X.*, Pd(II)-Catalyzed Intermolecular Arylation of Unactivated C(sp3)–H Bonds with Aryl Bromides Enabled by 8-Aminoquinoline Auxiliary. Organic Letters 2014, 16 (8), 2248-2251.
19. Lu, D.*; Wu, C.; Li, P.*, 3-Center-5-Electron Boryl Radicals with σ0π1 Ground State Electronic Structure. Organic Letters 2014, 16 (5), 1486–1489.
18. Pang, Y. C.+; Hou, X.+; Qin, L.; Wu, C.*; Xue, W.; Zheng, Y. Z.*; Zheng, Z.; Chen, X. M., Observation of allylic rearrangement in water-rich reaction. Chemical Communications 2014, 50, 2910-2912. [烯丙基重排机理,水团簇的辅助作用]
17. Li, R.+; Tang, H.+; Fu, H.; Ren, H.; Wang, X.; Wu, C*; Wu, C.*; Shi, F.*, Arynes Double Bond Insertion/Nucleophilic Addition with Vinylogous Amides and Carbodiimides. Journal of Organic Chemistry 2014, 79, 1344-1355.
16. Lu, D.*; Wu, C.; Li, P.*, Synergistic effects of lewis bases and substituents on the electronic structure and reactivity of boryl radicals. Chemistry – A European Journal 2014, 20 (6), 1630-1637.
15. Vogt, M.; Wu, C.; Oliver, A. G.; Meyer, C. J.; Schneider, W. F.*; Ashfeld, B. L.*, Site specific carboxylation of abnormal anionic N-heterocyclic dicarbenes with CO2. Chemical Communications 2013, 49, 11527-11529.
14. Cong, X.+; Tang, H.+; Wu, C.*; Zeng, X.*, Role of Mono-N-protected Amino Acid Ligands in Palladium(II)-Catalyzed Dehydrogenative Heck Reactions of Electron-Deficient (Hetero)arenes: Experimental and Computational Studies. Organometallics 2013, 32 (21), 6565-6575.
13. Vogt, M.; Bennett, J. E.; Huang, Y.; Wu, C.; Schneider, W. F.*; Brennecke, J. F.*; Ashfeld, B. L.*, Solid-State Covalent Capture of CO2 by Using N-Heterocyclic Carbenes. Chemistry – A European Journal 2013, 19 (34), 11134-11138.
12. Tang, H.; Wu, C.*, Reactivity of Azole Anions with CO2 from the DFT Perspective. ChemSusChem 2013, 6 (6), 1050-1056. [唑类含氮杂环的离子液体最多1:1化学计量的与CO2化学成键,对比了与SO2的作用]
11. McEwen, J. S.; Bray, J. M.; Wu, C.; Schneider, W. F.*, How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). Physical Chemistry Chemical Physics 2012, 14 (48), 16677-16685.
10. Wu, C.; Senftle, T. P.; Schneider, W. F.*, First-principles-guided design of ionic liquids for CO2 capture. Physical Chemistry Chemical Physics 2012, 14 (38), 13163-13170.
9. Wu, C.; Schmidt, D. J.; Wolverton, C.; Schneider, W. F.*, Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111). Journal of Catalysis 2012, 286 (7), 88-94. [本研究的结论也可以用于解释严重两极分化等社会现象,参见: 1% 与99%]
8. Li, H.; Wu, C.; Malinin, S. V.; Tretiak, S.*; Chernyak, V. Y.*, Exciton Scattering on Symmetric Branching Centers in Conjugated Molecules. Journal of Physical Chemistry B 2011, 115 (18), 5465-5475.
7. Li, H.; Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Excited States of Donor and Acceptor Substituted Conjugated Oligomers: A Perspective from the Exciton Scattering Approach. Journal of Physical Chemistry Letters 2010, 1 (23), 3396-3400.
6. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. III. Applications. Journal of Chemical Physics 2008, 129 (17), 174113.
5. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations. Journal of Chemical Physics 2008, 129 (17), 174112.
4. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. I. Formalism. Journal of Chemical Physics 2008, 129 (17), 174111. [文章4(理论),5(实现),6(应用)构成一个系列,特别是从跃迁能量的角度,系统地讨论激发子散射的理论及其实现方法。该系列的第四篇(本人未参与)讨论了跃迁强度及偶极等的定量实现。]
3. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Multiscale modeling of electronic excitations in branched conjugated molecules using an exciton scattering approach. Physical Review Letters 2008, 100 (5), 057405. [讨论如何定量地实现激发子散射方法]
2. Wu, C.; Tretiak, S.*; Chernyak, V. Y.*, Excited states and optical response of a donor-acceptor substituted polyene: A TD-DFT study. Chemical Physics Letters 2007, 433 (4-6), 305-311. [本文的亮点:讨论了B3LYP方法在处理共轭体系的局限性]
1. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering and localization in branched dendrimeric structures.Nature Physics 2006, 2 (9), 631-635. [Chernyak首次提出激发子散射概念,定性地描述该概念。核心的创新:将粒子在一维势阱模型与散射理论联系起来,简洁地解释复杂枝状共轭体系的激发态电子结构。当然这个想法并不局限于处理电子激发态,也可以应用到其他适合的体系。相关但并不准确的解读:Exciton dynamics: Simplifying organic complexity. 综述参见33号文章]
荣誉奖励:
1、西安交通大学青年拔尖B类。
西安交通大学吴超教授应邀到兰州化物所进行学术交流
6月19日,应固体润滑国家重点实验室邀请,西安交通大学前沿科学技术研究院吴超教授来到中国科学院兰州化学物理研究所进行学术交流,并作了题为Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111)的学术报告。
报告中,以表面覆盖率对氧解离的影响为例,吴超教授介绍了基于第一性原理的表面覆盖率效应对表面催化反应动力学影响方面的工作,包括该项工作的背景、思路、具体实施以及对催化反应研究的一些指导意义。
吴超教授于2001、2004年分别获得大连理工大学学士、硕士学位,2009年获得美国韦恩州立大学博士学位,2009年2月至2012年3月在美国圣母大学(导师William F. Schneider教授)做博士后。2012年3月至今,任西安交通大学前沿科学技术研究院电子结构研究小组主任。吴超教授的主要研究领域为基于第一原理的多尺度模拟,表面催化反应热力学与动力学,设计环境友好的气体分离材料,电子激发态的理论发展与应用,自组装的单层体系,化学信息学,多媒体交互式软件在化学教育中的应用。相关研究工作发表于Nature Physics、Physical Review Letters等。
来源:中国科学院兰州物理化学研究所 2012-06-19
吴超:为材料物理“加速”
随着国民经济的飞速发展,我国材料科学迎来了全新的发展机遇。以科学技术推动材料事业的发展,为经济发展服务,成为科技工作者的历史使命。在人才林立的西安交通大学的实验室里,他正用智慧和汗水将梦想凝结成形。朴实的话语,蕴含的却是他十余年来为祖国材料物理化学科学事业“加速”的梦想。他就是西安交通大学前沿科学技术研究院材料物理中心独立项目负责人吴超。
吴超的求学之路是一条向上的曲线,2001和2004年,他在大连理工大学分别获得学士和硕士学位,科研的道路越走越远,学术研究越来越深,求知的心指引他走出了国门。2009年,吴超获美国韦恩州立大学化学博士学位。2009年至2012年,在美国圣母大学做博士后研究。
储备多年,吴超为回国做好了充分的准备,扎实的专业基础与过人的胆识,成就了硕果累累的研究成绩,“三大突破”让国内外同行为之侧目。
关于复杂有机共轭体系的电子激发态的理论突破,针对这一问题,在与博士导师光谱学家Vladimir Y. Chernyak 教授等人的合作中,吴超参与提出并发展了描述共轭有机体系中电子激发态的激发子散射方法,该方法解决了计算超大分子体系电子激发态的难题。
共轭有机体系是潜在的良好的光电材料。理解它们的光电性质是设计、改良这些材料的前提。已有的基于量子力学理论的方法,由于计算量过大,不能够处理复杂体系。激发子散射方法将电子激发态表述为激发子在分子内传播以及其在节点处散射的行为,从而能够精确描述复杂体系的激发态。激发子散射方法的定性描述最初发表于国际物理领域顶尖杂志《自然•物理》上,该杂志的新闻与评论专栏在第一时间特约理论化学物理学家Eric R. Bittner 教授对这一理论突破进行了专文评论与解读。在数年内,这篇文章已经被广泛引用。著名实验光谱学家Gregory D. Scholes 在一篇综述中这样评价“吴等研究人员最近发表了一种通过复杂的方式连接结构单元的方法,该方法能够预测纳米尺度系统的性质。该工作的优美之处在于通过概念上简洁的方法描述复杂体系的复杂过程”。
第二个突破是,他发展了一套基于第一原理的综合方法,该方法能够系统的、准确的、定量处理覆盖率对于催化剂表面反应动力学的影响。是对于表面反应动力学研究方法的重要贡献。
覆盖率对于表面反应的影响历来是一个研究热点,因为覆盖率影响反应的各个阶段的势能面,所以它的复杂性一直困扰多相催化领域。吴超提出并发展了一套基于第一原理的基反应位方法能够有效地解决上述问题。该方法综合使用了密度泛函理论,簇展开方法,巨正则系综蒙特卡罗方法和基于统计力学的分析方法。依据该方法,研究者可以避免在设定平均场作用时走入以前的误区。这一方法已经在多次国际会议和校际学术交流中进行了报告,总结成的论文在本方向的权威杂志《催化学报》上发表。吴超在西安交通大学的主要研究方向之一就是计划将这种方法拓展并应用于设计新型双金属催化剂系统。
除此之外,吴超还探索用理论方法指导可持续的化学化工研究,即用密度泛函理论设计基于含氮/磷杂环化合物的可循环使用的温室气体吸收材料,并指导相应的实验研究。
围绕该方面的项目是环境友好化学的跨学科合作研究。吴超研究组在对于含氮/磷杂环离子液体与二氧化碳、二氧化硫反应机理的深入理解基础上,采用定量构效关系方法,对于可能的化学修饰进行了系统的研究,提出了可能的高效吸附剂候选分子。实验组正在合成并且测试实际吸附效果与稳定性。同时采用化工工程的吸附模型与动力学方法对于吸收过程进行了模拟,理论上给出最优的可能结果,从而给实验以有力的指导。
在创新技术上,吴超有着更远大的梦想,“让中国的材料物理化学科学在世界范围内占有一席之地,将来走向产业化,在标准制定中为中国争取最大的话语权。”谈及此处,吴超眼神里满是憧憬。
来源:科学中国人 2014年第2期
中国科技创新人物云平台暨“互联网+”科技创新人物开放共享平台(简称:中国科技创新人物云平台)免责声明:
1、中国科技创新人物云平台是:“互联网+科技创新人物”的大型云平台,平台主要发挥互联网在生产要素配置中的优化和集成作用,将互联网与科技创新人物的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态,实现融合创新,为大众创业,万众创新提供智力支持,为产业智能化提供支撑,加快形成经济发展新动能,促进国民经济提质增效升级。
2、中国科技创新人物云平台暨“互联网+”科技创新人物开放共享平台内容来源于互联网,信息都是采用计算机手段与相关数据库信息自动匹配提取数据生成,并不意味着赞同其观点或证实其内容的真实性,如果发现信息存在错误或者偏差,欢迎随时与我们联系,以便进行更新完善。
3、如果您认为本词条还有待完善,请编辑词条。
4、如果发现中国科技创新人物云平台提供的内容有误或转载稿涉及版权等问题,请及时向本站反馈,网站编辑部邮箱:kjcxac@126.com。
5、中国科技创新人物云平台建设中尽最大努力保证数据的真实可靠,但由于一些信息难于确认不可避免产生错误。因此,平台信息仅供参考,对于使用平台信息而引起的任何争议,平台概不承担任何责任。