| 加入桌面
科技创新网
人才招聘
人才招聘
发布信息
发布信息
会员中心
会员中心

温维佳——香港科技大学教授

点击图片查看原图
 
有效期至: 长期有效
最后更新: 2015-11-27
 
还不是会员,立即免费注册
免费注册为会员后,您可以...
发布专家信息 推广科研成果
建立专家网页 在线洽谈生意
还不是会员,立即免费注册
还不是会员,立即免费注册
 
 
    温维佳, 重庆大学物理学院院长、香港科技大学教授、重庆大学特聘教授,软凝聚态物理专家,主要研究领域涉及凝聚态物理,微米及纳米材料的研究,先进功能结构材料,纳米电(磁)流变液,微流控制,软物质物理及光电子功能结构材料等。

Dr. Weijia Wen 温维佳

Professor

Department of Physics

Hong Kong University of Science and Technology

Clear Water Bay, Kowloon

Hong Kong 

Professor Wen's main research interests include soft condensed matter physics, electrorheological (ER) and magnetorheological (MR) fluids, field-induced pattern and structure transitions, micro- and nano-fluidic controlling, microsphere and nanoparticle fabrications, thin film physics, band gap materials, metamaterials and nonlinear optical materials. 

Electrorheological (ER) and Magnetorheological (MR) Fluids

ER fluids denote a class of materials consisting of nanometer to micrometer sized dielectric particles dispersed in a liquid, whose rheological properties are controllable by an external electric field. In particular, they can reversibly transform from a liquid to a solid within one hundredth of a second. While in the solid state (with the electric field applied), the strength of that solid, measured by the yield stress, is the critical parameter that governs the application potential of the ER fluids. 

Smart droplet via ER fluid (Soft Matter)

ER fluid and its application in microfluidics (Annual Review: Fluid Mech.) 

Universal Logic Gate by ER fluid (Soft Matter) 

Single-phase ER Effect (Soft Matter) 

Micro-mechanism of ER Fluid (Phys. Rev. Lett.) 

Electrorheological Fluid Dynamics (Phys. Rev. Lett.) 

Review Article for ER fluid (Soft matter) 

The Giant Electrorheological Effect (Nature Materials) 

The yield stress of nanoparticles-based ER fluid is more than 250 kPa (Appl. Phys. Lett) 

Dielectric Electrorheological Fluids: Theory and Experiment (Advances in Physics) 

Frequency Dependence of the ER Effect and the Role of Water (Phys. Rev. Lett.) 

The Ground State of the MR Fluids (Phys. Rev. Lett.) 

Field-Induced Structural Transition from BCT to FCC in EMR Fluid (Phys. Rev. Lett.) 

Microfluidic Devices; Micro- Nano-fabrications

Microfluidic devices are new generation micro-chips which will be widely used in Bio-microchip, Chemical reaction technology, lab-on-a-chip and other research areas. Our microfluidic devices are mostly associated with ER techniques developed recently in our laboratory. The merits of which are its fast response time, digitalization, easily controlling, and good reliability.

Nanofluidic Mixing (Appl. Phys. Lett) 

Single Nucleotide Polymorphism detection (Biomedical Microdevices) 

DNA detection in microfluidic chip-based assays (Microchim Acta) 

Three-dimensional thermal mapping within microfluidic chip (Scientific Reports) 

Micro-reaction with microfluidic chip (Analytical Chemistry) 

Universal logic gate from hybrid divider (Lab on Chip) 

Interchangeable Micro-PCR device (Biomedical Microdevices) 

Cell Micro-patterning (RSC Advances) 

Local Contact Angle on a Heterogeneous Surface (Langmuir) 

Logic gate with smart colloid (Lab on a Chip) 

Wax-bonding Microfluidic Chips (Lab on a Chip) 

"3D microfluidic chips" (Lab on a Chip) 

"Smart Window" (Appl. Phys. Lett.) 

Smart droplets (Soft Matters) 

Core-shell microspheres (Advanced Functional Materials) 

PDMS Conducting composite ( Advanced Materials) 

Micro thermo-indicator for microfluid (Appl. Phys. Lett.) 

Micro-heater (Appl. Phys. Lett.) 

Microfluidic pump (Appl. Phys. Lett.) 

Hybrid microfluidic mixer (Phys. Rev. Lett.) 

ER fluid-based flexible platform (Appl. Phys. Lett.) 

Microspheres and Nanoparticles

The team in UST initiated the development of techniques to fabricate multiply-coated microspheres with different desired properties. In addition to its utility in ER suspensions, such microspheres also provide a new tool for basic research in condensed matter physics.

Carbon-doped SiO2 nanoparticles for photocatalysis (Nanoscale) 

Honeycomb structural microspheres (Small) 

Hollow Titania microspheres (Chem. Comm.) 

Multi-core microspheres (Langmuir) 

Magnetically responsive microspheres (Appl. Phys. Lett.) 

Interaction between two magnetic microspheres (Appl. Phys. Lett.) 

The Significant Improvement of ER Fluids in 1997 by Using Multilayer-Coated Microspheres (Phys. Rev. Lett.) 

A Novel Class of Planar Magnetic Colloidal Crystals (Phys. Rev. Lett.) 

Functional Materials: Fractal Photonics; Metamaterials 

A specific class of planar conducting fractals possesses a series of self-similar resonances, leading to multiple gaps and pass bands for electromagnetic waves over an ultra-wide frequency range. The important feature of this material is that it exhibits not only the tunable multiple bands but also subwavelength properties in lateral dimensions, as well as simulates the functions usually exhibited by three-dimensional photonic crystals. 

Optical conductivities and signatures of topological insulators (Phys. Rev. B)

Thermal coherence properties of topological insulator (Phys. Rev. B) 

Subwavelength polarization rotators (Optics Letters) 

Resonant waveguide sensing (Biomedical Optics Express) 

Fano Effect --Terahertz extraordinary transmission (Appl. Phys. Lett.) 

Resonant terahertz transmissions (Optics Express) 

"Fractal THz Antenna" (Appl. Phys. Lett.) 

EM wave field rotation effect (Phys. Rev. Lett.) 

Resonances-induced transmission (Optics Express) 

Acoustic wave transmission through bull's eye structure (Appl. Phys. Lett.) 

3D H-fractal and its photonic bandgap properties (Phys. Rev. B) 

Surface resonant-states-enhanced acoustic wave tunneling (Phys. Rev. Lett.) 

Acoustic and EM wave Metamaterials (Phys. Rev. B) 

Surface electric field determination of hole array (Appl. Phys. Lett.) 

Fluid-solid composite (Phys. Rev. Lett.) 

Negative refractive index effect for EM wave tunneling (Appl. Phys. Lett.) 

Resonant transmission of EM wave through a metal plate (Phys. Rev. B) 

Electromagnetic wave tunneling (Phys. Rev. Lett) Movie 

Metallic planar fractal with photonic band gaps in microwave (Phys. Rev. Lett.) 

Optical Materials and Thin films 

Optical materials with large third-order nonlinear susceptibility, χ(3), are essential for light-controlled phase and refractive index modulation for future applications in optical computing, real-time holography, optical correlators and phase-conjugators. The nonlinear composite materials with χ(3) up to ~105esu.

Photoluminescence from Au nanoparticles (J. Opt. Soc. Am. B) 

Multilayer gold nanoparticle-doped thin film (J. Opt. Soc. Am. B) 

Optical nonlinearity of nanocrystalline Au/ZnO Composite Films (Optics Letters) 

Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles (Appl. Phys. A )

 

 

中国科技创新人物云平台暨“互联网+”科技创新人物开放共享平台(简称:中国科技创新人物云平台)免责声明:  

1、中国科技创新人物云平台是:“互联网+科技创新人物”的大型云平台,平台主要发挥互联网在生产要素配置中的优化和集成作用,将互联网与科技创新人物的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态,实现融合创新,为大众创业,万众创新提供智力支持,为产业智能化提供支撑,加快形成经济发展新动能,促进国民经济提质增效升级。

2、中国科技创新人物云平台暨“互联网+”科技创新人物开放共享平台内容来源于互联网,信息都是采用计算机手段与相关数据库信息自动匹配提取数据生成,并不意味着赞同其观点或证实其内容的真实性,如果发现信息存在错误或者偏差,欢迎随时与我们联系,以便进行更新完善。  

3、如果您认为本词条还有待完善,请编辑词条

4、如果发现中国科技创新人物云平台提供的内容有误或转载稿涉及版权等问题,请及时向本站反馈,网站编辑部邮箱:kjcxac@126.com。

5、中国科技创新人物云平台建设中尽最大努力保证数据的真实可靠,但由于一些信息难于确认不可避免产生错误。因此,平台信息仅供参考,对于使用平台信息而引起的任何争议,平台概不承担任何责任。

 
更多..同类创新人物
 
 
Powered by kjcx.ac.cn 9.0
购物车(0)    站内信(0)     新对话(0)