丁洪,博士,现为中国科学院物理所研究员,北京凝聚态国家实验室常务副主任和首席科学家。
教育及工作经历:
1990年毕业于上海交通大学。
1995年获美国University of Illinois at Chicago的物理博士学位。
1995.9 - 1998.8在美国阿贡Argonne国家实验室(University of Illinois at Chicago/Argonne National Laboratory)做博士后
1998.9 - 2003.8在美国波士顿学院大学Boston College 物理系做助理教授。
2003.9 - 2007.8在美国波士顿学院大学Boston College 物理系任副教授。
2007.9 - 2008.6在美国波士顿学院大学Boston College 物理系任正教授。
现任中国科学院物理研究所杰出研究员、北京凝聚态物理国家实验室首席科学家。
学术兼职:
1、2011年当选为美国物理学会会士。
主讲课程:
资料更新……
培养研究生情况
指导学生
徐楠 硕士研究生
石应波 硕士研究生
汪晓平 硕士研究生
招生信息:
拟每年招生4-6名,欢迎基础知识扎实,动手能力强,英语水平好,并有志从事基础物理研究的物理本科毕业生联系报考。
中科院物理所角分辨光电子能谱课题组招聘博士后
中国科学院物理研究所角分辨光电子能谱课题组,根据承担的科研任务,拟面向全国招聘2名博士后研究人员(非定向)。
一、合作导师:
丁洪,中国科学院物理研究所研究员、北京凝聚态物理国家实验室首席科学家。
二、博士后拟从事的研究课题:
1、 利用角分辨光电子能谱研究高温超导体和其它强关联电子材料的电子结构和电子激发性质。
2、 在北京建设多台世界先进的角分辨光电子能谱仪。
3、 在上海同步辐射光源建设一条世界领先的软X射线束线站。
三、应聘条件:
1、具有角分辨光电子能谱或类似实验手段的博士研究经历。
2、能胜任设计和建设角分辨光电子能谱仪和其它相关仪器。
四、报名要求:
1、博士后申请表一式两份(表格到中国博士后网站下载);
2、身份证复印件或护照复印件;
3、两位本领域教授(或相当职称)的推荐信(其中至少一位为博士生导师);
4、博士学位论文或论文详细摘要;
5、博士学位证书复印件或有关学位证明(暂未拿到证书者可请学位授予部门提供决定授予学位的书面证明);
6、已发表论文目录及抽印本;
7、本人今后一段时间内拟从事的研究工作的设想。
8、政审表、体检表
五、联系方式:
导师:丁洪
电话:010-82649200 email: dingh@aphy.iphy.ac.cn
中科院物理所研究生部: 纪海鸿
电话:010-82649126 email:jihh@iphy.ac.cn
主要研究方向:
1.角分辨光电子能谱仪
角分辨光电子能谱(Angle resolved photoemission spectroscopy ,简称ARPES)利用光电效应研究固体的电子结构。1887年由德国物理学家赫兹发现,一束光照射在样品表面,当入射光频率高于特定阈值(功函数)时,表面附近的电子会脱离样品,成为自由电子,这就是光电效应。在我们的ARPES实验中,采用稀有气体电离或者同步辐射作为光源。光电子在真空飞行的过程中,被一个接受角度很小的能量分析器收集计数。
目前应用最广的分析器测量光电子数与其出射角(即电子动量)和出射动能的函数关系。利用动能守恒定律和动量守恒定律,我们可以计算出样品中电子的动能及动量。其中,能量守恒定率为:在这一过程中,系统的能量是守恒的:光电子的动能,材料的功函数以及电子的束缚能之和等于入射光子的能量。
其中,ħω为入射光能量,Ekin为出射光电子动能,ϕ为材料功函数(发生光电效应的最小光子能量),EB为电子束缚能。我们的主要目的是得到样品中电子束缚能与电子动量的函数关系。
垂直于样品表面方向上晶体平移对称性被破坏,导致在此方向上动量不再守恒。因此我们只能得到固体中的电子在平行于样品表面方向上动量分量。光子的动量很小,与电子动量相比可以忽略。所以,按照图中的几何关系,平行于样品表面方向的动量守恒定律可表示为:
角分辨光电子谱通过测量不同出射角度的光电子的动能,就可以得到电子在固体中平行于样品表面的动量分量。其中P||为平行于样品表面的选定方向上的动量分量,k||为固体中电子的波矢,me为电子质量,Ekin为电子的动能,θ电子出射角度。
将得到的能量与动量对应起来,就可以得到晶体中电子的色散关系。同时,ARPES也可以得到能态密度曲线和动量密度曲线,并直接给出固体的费米面。
2.超导体简介
目前我们小组的研究重点集中在高温超导领域,包括铜氧化合物超导体和最近发现的铁(镍)基超导体。我们利用角分辨光电子谱的方法,测定这些新型超导体的电子结构。
当温度低于某一临界温度Tc时,一些材料的直流电阻会突变为零,这种现象称为超导现象,Tc称为超导转变温度。材料处于超导状态时,超导电流可在无外加电压的情况下维持几个月而无明显衰减。超导体的另一个重要特性为迈斯纳效应:将超导体置于磁场中并冷却至超导态,超导体表面会出现超导电流。超导电流产生的磁场于外加磁场抵消,超导体内部磁感应强度B=0,即完全抗磁性。
超导体通常可分为低温超导体和高温超导体两类。
常规低温超导体
第一个被人类发现的常规低温超导体是1911年荷兰物理学家Onnes在莱顿实验室测量低温下汞的电阻率随温度的变化时发现的。大多数常规低温超导体都是金属元素或者金属二元合金。常规超导体的Tc较低,通常都位于液氦温度区,4K。一些金属二元合金的Tc可达到23K。
1957年,美国物理学家Bardeen,Cooper和Schrieffer提出了BCS理论,成功的对常规低温超导体进行了理论解释。因此人们通常将常规超导体称为BCS超导体。理论认为,费米面附近动量大小相同,动量方向及自旋方向相反的电子通过交换虚声子形成束缚的电子对,称为库柏对。库柏对是波色子,在低温时全部凝聚在最低能态,此组态为超导基态。由此出发可以解释常规超导体的零电阻效应,迈斯纳效应等一系列超导现象。
库柏对组态为自旋单态(S=0),电荷数为2e。常规超导体的能隙(序参量)为各向同性的(S波超导体)。
高温超导体
1986年,德国物理学家柏诺兹和瑞士物理学家缪勒发现La2-xBaxCuO4为超导体,其Tc高达30K。这一突破性进展导致一系列转变温度更高的铜氧超导体的发现。此类超导体的转变温度较高,因此称之为高温超导体。高温超导体的晶体结构非常复杂。大多数高温超导体具有层状铜氧面结构。下图为Bi2Sr2CaCu2O8(Bi2212)单胞图。
电子传导主要发生在准二维的CuO2层上。在Bi2212中,两个CuO2层被Ca原子层分开。BiO2层在中间提供电荷。BiO2层间的化合键是很弱的范德瓦耳斯键。解理样品后,层间相互脱离,留下一个平整清洁的表面供ARPES研究。
高温超导体于常规超导体有一些相似之处:仍然存在库柏对,并且库柏对处于自旋单态等。同时,两者也存在一些差别:常规超导体的序参量为各向同性的,而高温超导体的序参量却是各向异性的;高温超导体电子配对并不是以声子为媒介。由于这些差别,高温超导体不能用BCS理论进行解释。下表为几种高温超导体及其超导转变温度。
compound | Tc(K) |
La2-xSrxCuO4 | 38 |
Nd2-xCexCuO4-y | 30 |
R1Ba2Cu2+mO6+m R: Y, La, Nd, sm, Eu, Ho Er, Tm, Lu |
92 (m=1) 95 (m=1.5) 82 (m=2) |
Bi2Sr2Can-1CunO2n+4 | 10 (n=1) 85 (n=2) 110 (n=3) |
Tl2Ba2Can-1CunO2n+4 | 80 (n=1) 100 (n=2) 125 (n=3) |
HgBa2Ca3Cu4O10 | 133 |
高温超导体的正常态也存在许多反常性质。其电子输运性质是各向异性的,CuO2面垂直方向上的电阻率比平行方向电阻率大两个数量级。平面内输运性质呈现出非费米液体性质;电阻率与温度(T)为正比关系(BCS理论中为T2关系)。
上图为高温超导体的相图。母相为莫特绝缘体,其基态是反铁磁态。随着空穴搀杂量的增加,材料转变为超导体。这说明高温超导体的关联效应和磁性在超导机制中非常重要。不同的竞争相在超导区相互作用,所有这些都增加了高温超导机制的复杂性。
3.共振非弹性X射线散射
X射线与物质的“共振”
X射线特指高能量光子,是物理研究领域中被广泛应用的一类特殊“探针”。光子的本质是震荡的电磁场,当X射线光子照射到样品,样品中的电子在感受到震荡的电磁场从而也产生震荡运动。我们知道,非匀速运动的带电粒子会产生电磁波,也就是发射光子。这些发射出来的光子与样品中电子云的分布以及其量子特性是相关的。所以,通过测量所谓散射的光子,我们可以获得材料中电子的信息。比如,X射线最常见的应用--X射线衍射,它反映的是电子云的分布信息,从而周期性的电子云分布(晶体)导致布拉格峰。另一类与电子量子特性相关的散射被称为“共振”。在量子力学的描述中,电子是处于不同的能级上的。当光子能量正好是两个能级的能量差时,就会发生电子在电磁场中的共振。电子在共振条件下发射的光子携带了这两个能级上电子的轨道、自旋等等量子信息。
共振X射线磁散射
电子是自旋1/2的带电粒子。它的电荷以及自旋的量子行为导致了物质世界丰富多彩的材料物性。我们希望知道与自旋相关的磁矩在原子尺度上是怎么排列的。在共振条件下,不同自旋方向的电子发射的光子强度和相位都不同。类比于X射线衍射,这个时候散射的光子反映了“自旋云”的信息。当自旋周期性排列好,比如形成铁磁体时,我们可以得到自旋的布拉格峰。
共振非弹性X射线散射
除了电荷和自旋静态的排列分布之外,它们怎么运动也是物理研究的一个核心问题。比如,通过一个摆动的钟摆,我们可以知道重力作用的大小,而静止的钟摆是不能提供这一信息的。同理,通过研究电荷和自旋的运动,我们可以得到各种量子相互作用的信息。当电荷和自旋在共振的X射线光场中运动起来,产生的不同的运动模对应不同的能量和动量。通过测量入射和出射光子的能量和动量差,由能量守恒和动量守恒定律可以得到电荷和自旋的动力学信息,即所谓的“激发谱”。由于X射线光子和多种自由度,包括自旋、轨道、电荷以及晶格都耦合,所以共振非弹性X射线散射可以测量材料的多种激发,比如磁子谱,电荷激发谱,声子谱等等。
目前的研究课题及展望:
1、对铁基超导体做进一步系统的研究,争取在超导机理方面取得重要的成果。
2、开展对拓扑量子材料、铜基超导体、重费米子材料的研究。
3、通过原位薄膜生长和测量,努力实现界面超导研究的突破。
4、研制世界一流的仪器设备。
科研成果:
在各类科学杂志上发表了160篇学术论文,其中高端杂志文章50篇 (《Nature》5篇,《Nature Physics》2篇,《Nature Communications》4篇,《Physical Review Letters》36篇,《Physical Review X》2 篇,《PNAS》1篇),被SCI引用超过9000次,H-引用指数为45,在国际学术会议作邀请报告超过70次。1995年获美国威斯康星同步辐射中心的阿拉丁光源奖,1999年获美国的斯隆奖,2003获美国波士顿学院杰出科研成就奖,2005年获中国国家杰出青年科学基金B类,2008年入选首批国家“千人计划”,2010年获中国侨界“创新人才”贡献奖,2011年被选为美国物理学会会士,2014年获汤森路透中国引文桂冠奖和科研团队奖。
主要用角分辨光电子能谱研究新奇超导体和强关联电子材料的电子结构和电子激发性质。目前研究的课题有:
1. 进一步研究铜氧高温超导体中的赝能隙以及电子与有关集体激发模式的耦合问题。这些是目前高温超导机理研究中的核心问题。希望得到较强的证据来寻求赝能隙和超导能隙的关联,分辨出与电子有较强耦合的集体模式是磁性模式还是声子。
2. 深入研究铁基高温超导体的物性和超导机理,扩大在这一领域的成果和领先地位。我们已经在超导能隙对称性的问题上取得了突破性的进展。铁基超导体是2008年新发现的高温超导体,其最高临界温度是56K。这种新型的高温超导体不仅具有很好的应用前景,而且对凝聚态基础物理是一个巨大的推动,铁基超导体已经在世界凝聚态物理领域中掀起一个研究高潮。
3. 研究NaxCoO2晶体的电子结构和准粒子激发行为。NaxCoO2具有二维层状晶体结构,其性质主要由形成三角格子的Co位置处3d电子所决定,并且随Na含量的不同发生显著变化。由于该材料经过插入水分子后可以变成超导体而成为研究的热点。
4. 系统研究Ca2-xSrxRuO4系列晶体的物理性质。该体系同样是受到广泛关注的一个系统。x=2的Sr2RuO4是p-波超导体,但随着Ca的替代,其性质发生变化,在x=0.2附近经历金属-绝缘体转变,x=0的Ca2RuO4是反铁磁绝缘体。在该系统中存在电荷、自旋和轨道的复杂耦合,以及铁磁和反铁磁的竞争。
近年来在国际重要学术杂志上发表了100多篇学术论文,其中6篇发表在《自然》杂志,30篇发表在《物理评论快报》杂志。这些文章被SCI引用超过6000次。
2015
1 B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng, Hong Ding, “Observation of Fermi arc spin texture in TaAs”, arXiv:1510.07256, accepted by PRL.
2 Y. M. Dai, H. Miao, L. Y. Xing, X. C. Wang, C. Q. Jin, Hong Ding and C. C. Homes, “Coexistence of Clean- and Dirty-limit Superconductivity in LiFeAs”, arXiv:1509.05021.
3 Yongkang Luo, H. Li, Y. M. Dai, H. Miao, Y. G. Shi, Hong Ding,A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, and J. D. Thompson, “Hall effect in the extremely large magnetoresistance semimetal WTe2”, Applied Physics Letters 107, 182411 (2015).
4 Kun Jiang, Jiangping Hu, Hong Ding, M. Shi, “Interatomic Coulomb interaction and electron nematic bond order in FeSe”, arXiv:1508.00588.
5 N. Xu, H. M. Weng, B. Q. Lv, C. Matt, J. Park, F. Bisti, V. N. Strocov, D. gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autès, O. V. Yazyev, Z. Fang, X. Dai, G. Aeppli, T. Qian, J. Mesot, Hong Ding, M. Shi, “Observation of Weyl nodes and Fermi arcs in TaP”, arXiv:1507.03983.
6 Y. M. Dai, J. Bowlan, H. Li, H. Miao, Y. G. Shi, S. A. Trugman, J.-X. Zhu, Hong Ding,A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, “Ultrafast Carrier Dynamics in the Large Magnetoresistance Material WTe2”, Physical Review B 92, 161104(R) (2015).
7 Zhijun Wang, P. Zhang, Gang Xu, L.K. Zeng, H. Miao, Xiaoyan Xu, T. Qian, Hongming Weng, P. Richard, A. V. Fedorov, Hong Ding,Xi Dai, Zhong Fang, “Topological nature of FeSe0.5Te0.5 superconductor”, Physical Review B 92, 115119 (2015).
8 H. W. Liu, P. Richard, Z. D. Song, L. X. Zhao, Z. Fang, G.-F. Chen, Hong Ding, “Raman study of lattice dynamics in Weyl semimetal TaAs”, Physical Review B 92, 064302 (2015).
9 W.-L. Zhang, H. Li, Dai Xia, H. W. Liu, Y.-G. Shi, J. L. Luo, Jiangping Hu, P. Richard, Hong Ding, “Observation of Raman active phonon with Fano lineshape in quasi-one-dimensional superconductor K2Cr3As3”, Physical Review B 92, 060502 (2015).
10 D. Chen, P. Richard, Z.-D. Song, W.-L. Zhang, S.-F. Wu, W. H. Jiao, Z. Fang, G.-H. Cao, Hong Ding, “Raman scattering investigation of quasi-one-dimensional superconductor Ta4Pd3Te16”, arXiv:1505.05247,accepted by JPCM.
11 Ambroise van Roekeghem, Pierre Richard, Xun Shi, Shangfei Wu, Lingkun Zeng, Bayrammurad Saparov, Yoshiyuki Ohtsubo, Tian Qian, Athena S. Sefat, Silke Biermann,Hong Ding, “Tetragonal and collapsed-tetragonal phases of CaFe2As2 -- a view from angle-resolved photoemission and dynamical mean field theory”, arXiv:1505.00753, submitted to PRB.
12 Y. M. Dai, H. Miao, L. Y. Xing, X. C. Wang, P. S. Wang, H. Xiao, T. Qian, P. Richard, X. G. Qiu, W. Yu, C. Q. Jin, Z. Wang, P. D. Johnson, C. C. Homes,Hong Ding, “Fermi surface nesting driven Fermi liquid to non-Fermi liquid crossover with suppressed superconductivity in LiFe1-xCoxAs”, Physical Review X 5, 031035 (2015).
13 S. F. Wu, P. Richard, A. van Roekeghem, S. M. Nie, H. Miao, N. Xu, T. Qian, B. Saparov, Z. Fang, S. Biermann, Athena S. Sefat, Hong Ding, “Direct spectroscopic evidence for completely filled Cu 3d shell in BaCu2As2 and a-BaCu2Sb2”, Physical Review B 91, 235109 (2015).
14 B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. Matt, F. Bisti, V. Strokov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, Hong Ding, “Observation of Weyl nodes in TaAs”, Nature Physics 11, 724-727 (2015).
15 Rui Lou, Zhonghao Liu, Wencan Jin, Haifeng Wang, Zhiqing Han, Kai Liu, Xueyun Wang, Tian Qian, Yevhen Kushnirenko, Sang-Wook Cheong, Richard M. Osgood, Jr.,Hong Ding, and Shancai Wang, “A Sudden Gap-Closure Cross the Topological Phase Transition in (Bi1−xInx)2Se3 Single Crystals”, Physical Review B 92, 115150 (2015).
16 P. Zhang, T. Qian, P. Richard, X. P. Wang, H. Miao, B. Q. Lv, B. B. Fu, T. Wolf, C. Meingast, X. X. Wu, Z. Q. Wang, J. P. Hu,H. Ding, “Evidence for intertwining orders in the electronic nematic state of FeSe”, Physical Review B 91, 214503 (2015).
17 B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian,H. Ding, “Experimental discovery of Weyl semimetal TaAs”, Physical Review X 5, 031013 (2015).
18 E. Razzoli, C. E. Matt, M. Kobayashi, X.-P. Wang, V. N. Strocov, A. van Roekeghem, S. Biermann, N. C. Plumb, M. Radovic, T. Schmitt, C. Capan, Z. Fisk, P. Richard, H. Ding, P. Aebi, J. Mesot, M. Shi, “Tuning electronic correlations in transition metal pnictides: chemistry beyond the valence count”, Physical Review B 91, 214502 (2015).
19 X. Liu, M. P. M. Dean, J. Liu, S. G. Chiuzbăian, N. Jaouen, A. Nicolaou, W. G. Yin, C. Rayan Serrao, R. Ramesh, H. Ding, J. P. Hill, “Probing single magnon excitations in Sr2IrO4 using O K-edge resonant inelastic X-ray scattering”, Journal of Physics: Condensed Matter 27,202202 (2015).
20 N. Xu, C. E. Matt, P. Richard, A. van Roekeghem, S. Biermann, X. Shi, S.-F. Wu, H. W. Liu, D. Chen, T. Qian, N. C. Plumb, M. Radovic, Hangdong Wang, Qianhui Mao, Jianhua Du, Minghu Fang, J. Mesot, H. Ding, M. Shi, “Camelback-shaped band reconciles heavy electron behavior with weak electronic Coulomb correlations in superconducting TlNi2Se2”, Physical Review B 92, 081116 (2015).
21 Delong Fang, Xun Shi, Zengyi Du, Pierre Richard, Huan Yang, X.X.Wu, Peng Zhang, Tian Qian, Xiaxin Ding, Zhenyu Wang, T. K. Kim, M. Hoesch, Xianhui Chen, Jiangping Hu, H. Ding, Hai-Hu Wen, “Observation of a van Hove Singularity with Gap Nodes in KFe2As2”, arXiv:1412.0945, accepted by PRB.
22 W.-L. Zhang, P. Richard, H. Ding, Athena S. Sefat, J. Gillett, Suchitra E. Sebastian, M. Khodas, G. Blumberg, “On the origin of the electronic anisotropy in iron pnicitde superconductors”, arXiv:1410.6452.
23 W.-D. Kong, S.-F. Wu, P. Richard, C.-S. Lian, J.-T. Wang, C.-L. Yang, Y.-G. Shi, and H. Ding, “Raman scattering investigation of large positive magnetoresistance material WTe2”, Applied Physics Letters 106, 081906 (2015).
2014
24 J.-Z. Ma A. van Roekeghem P. Richard, Z.-H. Liu, H. Miao, L.-K. Zeng, N. Xu, M. Shi, C. Cao, J.-B. He, G.-F. Chen, Y.-L. Sun, G.-H. Cao, S.-C. Wang, S. Biermann, T. Qian, and H. Ding, “Correlation-induced self-doping in iron-pnictide superconductor Ba2Ti2Fe2As4O”, Physical Review Letters 113, 266407 (2014).
25 Zhiqiang Tu, Shangfei Wu, Fan Yang, Yongfeng Li, Liqiang Zhang, Hongwen Liu, Hong Ding, Pierre Richard, “Three-Dimensional Nanoporous Graphene Substrate for Surface-Enhanced Raman Scattering”, Materials Letters 152, 264 (2015) .
26 Ambroise van Roekeghem, Thomas Ayral, Jan M. Tomczak, Michele Casula, Nan Xu, Hong Ding, Michel Ferrero, Olivier Parcollet, Hong Jiang, Silke Biermann, “Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo2As2”, Physical Review Letters 113, 266403 (2014).
27 H. Miao, T. Qian, X. Shi, P. Richard, T. K. Kim, M. Hoesch, L. Y. Xing, X. C. Wang, C. Q. Jin, J. P. Hu, H. Ding, “Observation of strong electron pairing on bands without Fermi surfaces in LiFe1-xCoxAs”, Nature Communications 6, 6056 (2015).
28 N. Xu, C. E. Matt, E. Pomjakushina, J. H. Dil, G. Landolt, J.-Z. Ma, X. Shi, R. S. Dhaka, N. C. Plumb, M. Radovic, V. N. Strocov, T. K. Kim, M. Hoesch, K. Conder, J. Mesot, H. Ding, M. Shi, “Surface vs bulk electronic structures of a moderately correlated topological insulator YbB6 revealed by ARPES”, Physical Review B 90, 085148 (2014) .
29 J.-X. Yin, Zheng Wu, J.-H. Wang, Z.-Y. Ye, Jing Gong, X. -Y. Hou, Lei Shan, Ang Li, X. -J. Liang, X.-X. Wu, Jian Li, C.-S. Ting, Z. Wang, J.-P. Hu, P.-H. Hor, H. Ding, S. H. Pan, “Observation of a Robust Zero-energy Bound State in Iron-based Superconductor Fe(Te,Se)”, Nature Physics 11, 543 (2015) .
30 T. Qian, H. Miao, Z. J. Wang, X. Liu, X. Shi, Y. B. Huang, P. Zhang, P. Richard, M. Shi, M. H. Upton, J. P. Hill, G. Xu, X. Dai, Z. Fang, H. C. Lei, C. Petrovic, A. F. Fang, N. L. Wang, H. Ding, “Structural phase transition induced by van Hove singularity in 5d transition metal compound IrTe2”, New Journal of Physics 16, 123038 (2014) .
31 Xing, LY; Miao, H; wang, xiancheng; Ma, J; Liu, Q; Deng, Z; Ding, Hong, Jin, Changqing, “The anomaly doping of Cu on LiFeAs superconductors”, Journal of Physics: Condensed Matter 26, 435703 (2014) .
32 Gang Wang, Tianping Ying, Yaobo Huang, Shifeng Jin, Lei Yan, Hong Ding, Xiaolong Chen, “Growth of (NaxKy)FezSe2 crystals by chlorides flux at low temperatures”, Journal of Crystal Growth, (2014) .
33 Xu, C. E. Matt, E. Pomjakushina, X. Shi, R. S. Dhaka, N. C. Plumb, M. Radovic ́, P. K. Biswas, D. Evtushinsky, V. Zabolotnyy, J. H. Dil, K. Conder, J. Mesot, H. Ding, M. Shi, “Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES”, Physical Review B 90, 085148 (2014) .
34 S. F. Wu, P. Richard, X. B. Wang, C. S. Lian, S. M. Nie, J. T. Wang, N. L. Wang, H. Ding, “Raman scattering investigation of the electron-phonon coupling in superconducting Nd(O,F)BiS2”, Physical Review B 90, 054519 (2014) .
35 L. K. Zeng, X. B. Wang, J. Ma, P. Richard, S. M. Nie, H. M. Weng, N. L. Wang, Z. Wang, T. Qian, H. Ding “Observation of anomalous temperature dependence of spectrum on small Fermi surfaces in a BiS2-based superconductor”, Physical Review B 90, 054512 (2014) .
36 N. Xu, P.K. Biswas, J.H. Dil, R.S. Dhaka, G. Landolt, S. Muff, C.E. Matt, X. Shi, N.C. Plumb, M. Radovic, E. Pomjakushina, K. Conder, A. Amato, S.V. Borisenko, R. Yu, H.-M. Weng, Z. Fang, X. Dai, J. Mesot, H. Ding M. Shi, “Direct observation of the spin texture in strongly correlated SmB6 and experimental realization of the first topological Kondo insulator”, Nature Communications 5, 4566 (2014) .
37 P. Zhang, P. Richard, T. Qian, X. Shi, J. Ma, L.-K. Zeng, X.-P. Wang, E. Rienks, C.-L. Zhang, Pengcheng Dai, Y.-Z. You, Z.-Y. Weng, X.-X. Wu, J. P. Hu, H. Ding, “Observation of momentum-confined in-gap impurity state in Ba0.6K0.4Fe2As2: evidence for anti-phase s± pairing”, Physical Review X 4, 031001 (2014) .
38 L.-L. Jia, Z.-H. Liu, Y.-P. Cai, T. Qian, X.-P. Wang, H. Miao, P. Richard, Y.-G. Zhao, Y. Li, D.-M. Wang, J.-B. He, M. Shi, G.-F. Chen, H. Ding and S.-C. Wang, “Observation of well-defined quasiparticles at a wide energy range in a quasi-two-dimensional system”, Physical Review B 90, 035133 (2014) .
39 H. Miao, L. -M. Wang, P. Richard, S. -F. Wu, J. Ma, T. Qian, L. -Y. Xing, X. -C. Wang, C. -Q. Jin, C. -P. Chou, Z. Wang, W. Ku and H. Ding, “Coexistence of orbital degeneracy lifting and superconductivity in iron-based superconductors”, Physical Review B 89, 220503(R) (2014) .
40 E. Ieki, K. Nakayama, Y. Miyata, T. Sato, H. Miao, N. Xu, X.-P. Wang, P. Zhang, T. Qian, P. Richard, Z.-J. Xu, J. S. Wen, G. D. Gu, H. Q. Luo, H.-H. Wen, H. Ding, and T. Takahashi, “Evolution from incoherent to coherent electronic states and its implications for superconductivity in FeTe1−x Sex”, Physical Review B 89, 140506(R) (2014).
41 S.-F. Wu, P. Richard, W.-L. Zhang, C.-S. Lian, Y.-L. Sun, G.-H. Cao, J.-T. Wang, and H. Ding, “Raman scattering investigation of superconducting Ba2Ti2Fe2As4O”, Physical Review B 89, 134522 (2014).
42 SHI Ying-Bo, HUANG Yao-Bo, WANG Xiao-Ping, SHI Xun, ROEKEGHEM A-Van, ZHANG Wei-Lu, XU Na, RICHARD Pierre, QIAN Tian, RIENKS Emile, THIRUPATHAIAH S5,6, ZHAO Kan, JIN Chang-Qing, SHI Ming, and H. Ding, “Observation of Strong-Coupling Pairing with Weakened Fermi-Surface Nesting at Optimal Hole Doping in Ca0.33Na0.67Fe2As2”, Chinese Physics Letters 31, 067403 (2014).
43 T. Qian, H. Miao, Z. J. Wang, X. Liu, X. Shi, Y. B. Huang, P. Zhang, P. Richard, M. Shi, M. H. Upton, J. P. Hill, G. Xu, X. Dai, Z. Fang, H. C. Lei, C. Petrovic, A. F. Fang, N. L. Wang, and H. Ding, “Structural phase transition induced by van Hove singularity in 5d transition metal compound IrTe2”, New Journal of Physics 16, 123038 (2014).
2013
44 P. Richard, C. Capan, J. Ma, P. Zhang, N. Xu, T. Qian, J. D. Denlinger, G.-F. Chen, A. S. Sefat, Z. Fisk, H. Ding, “Angle-resolved photoemission spectroscopy observation of anomalous electronic states in EuFe2As2-xPx”, Journal of Physics: Condensed Matter, 26 035702 (2013)
45 H. Miao, L. -M. Wang, P. Richard, S. -F. Wu, J. Ma, T. Qian, L. -Y. Xing, X. -C. Wang, C. -Q. Jin, C. -P. Chou, Z. Wang, W. Ku, H. Ding, “Coexistence of orbital degeneracy lifting and superconductivity in iron-based superconductors”, Physical Review B 89, 220503(R) (2014)
46 N. Xu, P. Richard, X. Shi, A. van Roekeghem, T. Qian, E. Razzoli, E. Rienks, G.-F. Chen, E. Ieki, K. Nakayama, T. Sato, T. Takahashi, M. Shi, H. Ding, “Possible nodal superconducting gap emerging at the Lifshitz transition in heavily hole-doped Ba0.1K0.9Fe2As2”, Physical Review B 88, 220508(R) (2013)
47 N. Xu, X. Shi, P. K. Biswas, C. E. Matt, R. S. Dhaka, Y. Huang, N. C. Plumb, M. Radovic, J. H. Dil, E. Pomjakushina, A. Amato, Z. Salman, D. McK. Paul, J. Mesot, H. Ding, M. Shi, “Surface and Bulk Electronic Structure of the Strongly Correlated System SmB6 and Implications for a Topological Kondo Insulator”, Physical Review B 88, 121102(R) (2013)
48 R. H. Yuan, W. D. Kong, L. Yan, H. Ding, N. L. Wang, “In-plane optical spectroscopy study on FeSe epitaxial thin film grown on SrTiO3 substrate”, Physical Review B 87, 144517 (2013)
49 N. Xu, P. Richard, X.-P. Wang, X. Shi, A. van Roekeghem, T. Qian, E. Ieki, K. Nakayama, T. Sato, E. Rienks, S. Thirupathaiah, J. Xing, H.-H. Wen, M. Shi, T. Takahashi, H. Ding, “ARPES observation of isotropic superconducting gaps in isovalent Ru-substituted Ba(Fe0.75Ru0.25)2As2”,Physical Review B 87, 094513 (2013)
50 X. Liu, T. F. Seman, K. H. Ahn, Michel van Veenendaal, D. Casa, D. Prabhakaran, A. T. Boothroyd, H. Ding, J. P. Hill, “Strongly momentum-dependent screening dynamics in La0.5Sr1.5MnO4 observed with resonant inelastic x-ray scattering”, Physical Review B 87, 201103(R) (2013)
51 E. Razzoli, G. Drachuck, A. Keren, M. Radovic, N. C. Plumb, J. Chang, Y.-B. Huang, H. Ding, J. Mesot, and M. Shi, “Evolution from a nodeless gap to dx2−y2 form in underdoped La2−xSrxCuO4”, Physical Review Letters 110, 047004 (2013)
52 Ke-Jin Zhou, Yao-Bo Huang, Claude Monney, Xi Dai, Vladimir N. Strocov, Nan-Lin Wang, Zhi-Guo Chen, Chenglin Zhang, Pengcheng Dai, Luc Patthey, Jeroen van den Brink, Hong Ding & Thorsten Schmitt, “Persistent high-energy spin excitations in iron-pnictide superconductors”, Nature Communications 4, 1470 (2013)
53 N. Xu, P. Richard, A. van Roekeghem, P. Zhang, H. Miao, W.-L. Zhang, T. Qian, M. Ferrero, A. S. Sefat, S. Biermann, H. Ding, “Electronic band structure of BaCo2As2: a fully-doped ferropnictide with reduced electronic correlations”, Physical Review X 3, 011006 (2013)
54 Y.-B. Huang, P. Richard, J.-H. Wang, X.-P. Wang, X. Shi, N. Xu, Z. Wu, A. Li, J.-X. Yin, T. Qian, B. Lv, C. W. Chu, S. H. Pan, M. Shi, H. Ding, “Experimental investigation of the electronic structure of Ca0.83La0.17Fe2As2”, Chinese Physics Letters 30, 017402 (2013)
55 Y.-B. Huang, P. Richard, X.-P. Wang, T. Qian, H. Ding, “Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors”, AIP Advances 2, 041409 (2012)
56 P. Richard, T. Sato, S. Souma, N. Nakayama, H. W. Liu, K. Iwaya, T. Hitosugi, H. Aida, H. Ding, T. Takahashi , “Observation of momentum space semi-localization in Si-dopedβ-Ga2O3”, Applied Physics Letters 101, 232105 (2012)
57 Meng Wang, Miaoyin Wang, Hu Miao, S. V. Carr, D. L. Abernathy, M. B. Stone, X. C. Wang, Lingyi Xing, C. Q. Jin, Xiaotian Zhang, Jiangping Hu, Tao Xiang, Hong Ding, and Pengcheng Dai, “Effect of Li-deficiency impurities on the electron-overdoped LiFeAs superconductor”, Physical Review B 86, 144511 (2012)
58 X.-P. Wang, P. Richard, A. van Roekeghem, Y.-B. Huang, E. Razzoli, T. Qian, H.-D. Wang, C.-H. Dong, M.-H. Fang, M. Shi, H. Ding, “Observation of an isotropic superconducting gap at the Brillouin zone center of Tl0.63K0.37Fe1.78Se2”, EPL 99, 67001 (2012)
59 N. Xu, T. Qian, P. Richard, Y.-B. Shi, X.-P. Wang, P. Zhang, Y.-B. Huang, Y.-M. Xu, H. Miao, G. Xu, G.-F. Xuan, W.-H. Jiao, Z.-A. Xu, G.-H. Cao, H. Ding, “Effects of Ru Substitution on Dimensionality and Electron Correlations in Ba(Fe1-xRux)2As2”, Physical Review B 86, 064505 (2012)
60 Z.-H. Liu, P. Richard, N. Xu, G. Xu, Y. Li, X.-C. Fang, L.-L. Jia, G.-F. Chen, D.-M. Wang, J.-B. He, T. Qian, J.-P. Hu, H. Ding, S.-C. Wang, “Three-dimensionality and orbital characters of Fermi surface in (Tl,Rb)yFe2-xSe2”, Physical Review Letters 109, 037003 (2012)
61 X.-P. Wang, P. Richard, Y.-B. Huang, H. Miao, L. Cevey, N. Xu, Y.-J. Sun, T. Qian, Y.-M. Xu, M. Shi, J.-P. Hu, X. Dai, H. Ding, “Orbital Characters Determined from Fermi Surface Intensity Patterns using Angle-Resolved Photoemission Spectroscopy”, Physical Review B 85, 214518 (2012)
62 K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.-H. Liu, P. Richard, T. Sato, J. B. He, D.-M. Wang, G. F. Chen, H. Ding, T. Takahashi, S.-C. Wang, “Unconventional Anisotropic s-Wave Superconducting Gaps of LiFeAs Iron-Pnictide Superconductor”, Physical Review Letters 108, 037002 (2012)
63 Y. Tanaka, K. Nakayama, S. Souma, T. Sato, N. Xu, P. Zhang, P. Richard, H. Ding, Y. Suzuki, P. Das, K. Kadowaki, and T. Takahashi, “Evolution of electronic structure upon Cu doping in the topological insulator Bi2Se3”, Physical Review B 85, 125111 (2012)
2011
64 J.-P. Hu, H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors”, arXiv:1107.1334
65 H. Miao, P. Richard, Y. Tanaka, K. Nakayama, T. Qian, K. Umezawa, T. Sato, Y.-M. Xu, Y.-B. Shi, N. Xu, X.-P. Wang, P. Zhang, H.-B. Yang, Z.-J. Xu, J. S. Wen, G.-D. Gu, X. Dai, J.-P. Hu, T. Takahashi, H. Ding, “Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45”, arXiv:1107.0985
66 Y.-M. Xu, P. Richard, K. Nakayama, T. Kawahara, Y. Sekiba, T. Qian, M. Neupane, S. Souma, T. Sato, T. Takahashi, H. Luo, H.-H. Wen, G.-F. Chen, N.-L. Wang, Z. Wang, Z. Fang, X. Dai, H. Ding, “Fermi surface dichotomy of superconducting gap and pseudogap in underdoped pnictides”, Nature Communications 2, 392 (2011)
67 K. Nakayama, T. Sato, Y.-M. Xu, Z.-H. Pan, P. Richard, H. Ding, H.-H. Wen, K. Kudo, T. Sasaki, N. Kobayashi, and T. Takahashi, “Two pseudogaps with different energy scales at the antinode of the high-temperature Bi2Sr2CuO6 superconductor using angle-resolved photoemission spectroscopy”, Physical Review B 83, 224509 (2011)
68 Yoshinori Okada, Chetan Dhital, Wenwen Zhou, Erik D. Huemiller, Hsin Lin, S. Basak, A. Bansil, Y.-B. Huang, H. Ding, Z. Wang, Stephen D. Wilson, and V. Madhavan, “Direct Observation of Broken Time-Reversal Symmetry on the Surface of a Magnetically Doped Topological Insulator”, Physical Review Letters 106, 206805 (2011)
69 T. Qian, X.-P.Wang, W.-C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J.-G. Guo, X.-L. Chen, and H. Ding, “Absence of a Holelike Fermi Surface for the Iron-Based K0.8Fe1.7Se2 Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy”, Physical Review Letters 106, 187001 (2011)
70 H. Ding, K. Nakayama, P. Richard, S. Souma, T. Sato, T. Takahashi, M. Neupane, Y.-M. Xu, Z.-H. Pan, A.V. Federov, Z. Wang, X. Dai, Z. Fang, G.F. Chen, J.L. Luo, and N.L. Wang, “Electronic structure of optimally doped pnictide Ba0.6K0.4Fe2As2:a comprehensive angle-resolved photoemission spectroscopy investigation”, Journal of Physics: Condensed Matter 23,135701 (2011)
71 M. Neupane, P. Richard, Y.-M. Xu, K. Nakayama, T. Sato, T. Takahashi, A. V. Federov, G. Xu, X. Dai, Z. Fang, Z. Wang, G.-F. Chen, N.-L. Wang, H.-H. Wen, and H. Ding, “Electron-hole asymmetry in the superconductivity of doped BaFe2As2 seen via the rigid chemical-potential shift in photoemission”, Physical Review B 83, 094522 (2011)
72 T. Qian, N. Xu, Y.-B. Shi, K. Nakayama, P. Richard, T. Kawahara, T. Sato, T. Takahashi, M. Neupane, Y.-M. Xu, X.-P. Wang, G. Xu, X. Dai, Z. Fang, P. Cheng, H.-H. Wen, and H. Ding, “Quasinested Fe orbitals versus Mott-insulating V orbitals in superconducting Sr2VFeAsO3 as seen from angle-resolved photoemission ”, Physical Review B 83, 140513 (2011)
73 P. Zhang, P. Richard, T. Qian, Y.-M. Xu, X. Dai, and H. Ding, “A precise method for visualizing dispersive features in image plots", Review of Scientific Instruments 82, 043712 (2011)
74 X.-P. Wang, T. Qian, P. Richard, P. Zhang, J. Dong, H.-D. Wang, C.-H. Dong, M.-H. Fang and H. Ding, “Strong nodeless pairing on separate electron Fermi surface sheets in (Tl, K)Fe1.78Se2 probed by ARPES ", Europhysics Letters 93, 57001 (2011)
75 Y.-M. Xu, Y.-B. Huang, X.-Y. Cui, R. Elia, R. Milan, M. Shi, G.-F. Chen, P. Zheng, N.-L. Wang, P.-C. Dai, J.-P. Hu, Z. Wang, and H. Ding, “Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped Ba0.6K0.4Fe2As2" , Nature Physics 7, 198 (2011)
76 K. Nakayama, T. Sato, P. Richard, Y.-M. Xu, T. Kawahara, K. Umezawa, T. Qian, M. Neupane, G. F. Chen, H. Ding, and T. Takahashi, “Universality of superconducting gaps in overdoped Ba0.3K0.7Fe2As2 observed by angle-resolved photoemission spectroscopy" , Physical Review B 83, 020501 (2011)
2010
77 K. Nakayama, T. Sato, P. Richard, T. Kawahara, Y. Sekiba, T. Qian, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, T. Takahashi, “Angle-Resolved Photoemission Spectroscopy of the Iron-Chalcogenide Superconductor Fe1.03Te0.7Se0.3: Strong Coupling Behavior and the Universality of Interband Scattering”, Physical Review Letters 105, 197001 (2010)
78 Liling Sun, Xi Dai, Chao Zhang, Wei Yi, Lirong Zheng, Zheng Jiang, Xiangjun Wei, Yuying Huang, Jie Yang, Zhian Ren, Wei Lu, Xiaoli Dong, Guangcan Che, Qi Wu, H. Ding, Jing Liu, Tiandou Hu, Zhongxian Zhao, “Pressure-induced competition between superconductivity and Kondo effect in CeFeAsO1-xFx (x=0.16 and 0.3) ", Europhysics Letters 91, 57008 (2010)
79 Z.-H. Liu, P. Richard, K. Nakayama,G.-F. Chen, S. Dong, J.-B. He, D.-M. Wang, T.-L. Xia, K. Umezawa, T. Kawahara, S. Souma, T. Sato, T. Takahashi,T. Qian, YaoboHuang, Nan Xu, Yingbo Shi, H. Ding, and S.-C. Wang, “Unconventional superconducting gap in NaFe0.95Co0.05As observed by ARPES ", arXiv:1008.3265,submitted to Physical Review Letters
80 P. Richard, K. Nakayama, T. Sato, M. Neupane, Y.-M. Xu, J. H. Bowen, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, “Observation of Dirac Cone Electronic Dispersion in BaFe2As2”, Physical Review Letters 104, 137001 (2010)
2009
81 Y. Sekiba, T. Sato, K. Nakayama, K. Terashima, P. Richard, J.H. Bowen, H. Ding, Y.-M. Xu, L.J. Li, G.H. Cao, Z.-A. Xu, T. Takahashi, “Angle-resolved photoemission study of heavily electron-doped BaFe2-xCoxAs2”, Physica C 470, S394 (2009)
82 Y. Sekiba, T. Sato, K. Nakayama, K. Terashima, P. Richard, J. H. Bowen, H. Ding, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, and T. Takahashi, “Electronic structure of heavily electron-doped BaFe1.7Co0.3As2 studied by angle-resolved photoemission”, New Journal of Physics 11, 025020 (2009)
83 K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama, T. Kawahara, T. Sato, P. Richard, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, H. Ding, and T. Takahashi, “Fermi surface nesting induced strong pairing in iron-based superconductors”, Proceedings of the National Academy of Sciences 106, 7330 (2009)
84 T. Kawahara, K. Terashima, Y. Sekiba, J.H. Bowen, K. Nakayama, T. Sato, P. Richard, Y.-M. Xu,L.J. Li, G.H. Cao, Z.-A. Xu, H. Ding, T. Takahashi, “High-resolution ARPES study of electron-doped Fe-based superconductor BaFe1.85Co0.15As2”, Physica C 470, S440 (2009)
85 K. Nakayama, T. Sato, P. Richard, Y.-M. Xu, Y. Sekiba, S. Souma, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, “Superconducting-Gap Symmetry of Ba0.6K0.4Fe2As2 Studied by Angle-Resolved Photoemission Spectroscopy”, Europhysics Letters 85, 67002 (2009)
86 T. Sato, K. Nakayama, Y. Sekiba, P. Richard, Y.-M. Xu, S. Souma, T. Takahashi, G. F. Chen, J. L. Luo, N. L. Wang, and H. Ding, “Band Structure and Fermi Surface of an Extremely Overdoped Iron-Based Superconductor KFe2As2”, Physical Review Letters 103, 047002 (2009)
87 M. Neupane, P. Richard, Z.-H. Pan, Y. Xu, R. Jin, D. Mandrus, X. Dai, Z. Fang, Z. Wang, and H. Ding, “Observation of a novel orbital selective Mott transition in Ca1.8Sr0.2RuO4”, Physical Review Letters 103, 097001 (2009)
88 Z.-H. Pan, P. Richard, Y.-M. Xu, M. Neupane, P. Bishay, A.V. Fedorov, H. Luo, L. Fang, H.-H. Wen, Z. Wang, and H. Ding, “Evolution of Fermi surface and pseudogap in chemically substituted high-Tc cuprates”, Physical Review B 79, 092507 (2009)
89 Z.-H. Pan, P. Richard, A.V. Fedorov, T. Kondo, T. Takeuchi, S.L. Li, P. Dai, G.D. Gu, W. Ku, Z. Wang, and H. Ding, “Universal quasiparticle decoherence in hole- and electron-doped high-Tc cuprates”, arXiv:cond-mat/0610442
90 P. Richard, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Y.-M. Xu, G. F. Chen, J. L. Luo, N. L. Wang, and H. Ding, “Observation of an Orbital Selective Electron-Mode Coupling in Fe-Based High-Tc Superconductors”, Physical Review Letters 102, 047003 (2009)
2008
91 J.-H. Ma, Z.-H. Pan, F. C. Niestemski, M. Neupane, Y.-M. Xu, P. Richard, K. Nakayama, T. Sato, T. Takahashi, H.-Q. Luo, L. Fang, H.-H. Wen, Ziqiang Wang, H. Ding, and V. Madhavan, “Coexistence of competing orders in real and momentum space in high-Tc superconductor Bi2Sr2-xLaxCuO6+δ”, Physical Review Letters 101, 207002 (2008)
92 H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, “Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2”, Europhysics Letters 83 47001 (2008)
93 P. Richard, M. Neupane, Y.-M. Xu, P. Fournier, S.L. Li, Pengcheng Dai, Z. Wang, and H. Ding, “Emergence of the nodal portion of the Fermi surface due to the reduction process in the electron-doped cuprates”, Physica B 403, 1170 (2008)
2007
94 F.C. Niestemski, S. Kunwar, S. Zhou, S.L. Li, H. Ding, Z. Wang, P. Dai, V. Madhavan, “A distinct bosonic mode in an electron-doped high-transition-temperature superconductor”, Nature 450, 1058 (2007)
95 P. Richard, Y.-M. Xu, Z.-H. Pan, M. Neupane, S.L. Li, Pengcheng Dai, P. Fournier, Z. Wang, and H. Ding, “Competition between antiferromagetism and superconductivity in electron-doped cuprates triggered by oxygen reduction”, Physical Review Letters 99, 157002 (2007)
96 H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, “Evolution of the pseudogap across the magnetic-superconducting phase boundary of Nd2-xCexCuO4”, Physical Review B, 75, 224514 (2007)
97 Sen Zhou, Hong Ding, and Ziqiang Wang, “Correlating off-stoichiometric doping and nanoscale electronic inhomogeneity in high-Tc superconductor Bi2Sr2CaCu2O8+x”, Physical Review Letters 98, 076401 (2007)
2006
98 P. Richard, Z.-H. Pan, M. Neupane, A.V. Fedorov, T. Valla, P.D. Johnson, G.D. Gu, W. Ku, Z. Wang, and H. Ding, “Unusual photoemission resonances of oxygen-dopant induced states in Bi2Sr2CaCu2O8+x”, Physical Review B 74, 094512 (2006)
99 T. Valla, T.E. Kidd, J. D. Rameau, H.-J. Noh, G.D. Gu, P.D. Johnson, H.-B. Yang, and H. Ding, “Fine Details of the Nodal Electronic Excitations in Bi2Sr2CaCu2O8+x”, Physical Review B 73, 184518 (2006)
100 N.L. Wang, G. Li, D. Wu, X.H. Chen, C.H. Wang, and H. Ding, “Doping evolution of the chemical potential, spin-correlation gap, and charge dynamics of Nd2-xCexCuO”, Physical Review B 73, 184502 (2006)
101 Jiandi Zhang, Ismail, R. G. Moore, S.-C. Wang, H. Ding, R. Jin, D. Mandrus, and E. W. Plummer, “Dopant-Induced Nanoscale Electronic Inhomogeneity in Ca2-xSrxRuO4”, Physical Review Letters 96, 066401 (2006)
102 K. Terashima, H. Matsui, D. Hashimoto, T. Sato, T. Takahashi, H. Ding, T. Yamamoto, and K. Kadowaki, “Impurity effects on the electron-mode coupling in high-temperature superconductors”, Nature Physics 2, 27 (2006)
2005
103 T. Takeuchi, T. Kondo, T. Kitao, H. Kaga, H.-B. Yang, H. Ding, A. Kaminski, J.C. Campuzano, “Dimensional crossover in the electronic structure of (Bi,Pb)2(Sr,La)2CuO6+x”, Physical Review Letters 95, 227004 (2005)
104 H.-B. Yang, Z.-H. Pan, A.K.P. Sekharan, T. Sato, S. Souma, T. Takahashi, R. Jin, B.C. Sales, D. Mandrus, A.V. Fedorov, Z. Wang, and H. Ding, “Fermi surface evolution and Luttinger theorem in NaxCoO2: a systematic photoemission study”,, Physical Review Letters 95, 146401 (2005)
105 S. Raj, Y. Iida, S. Souma, T. Sato, T. Takahashi, H. Ding, S. Ohara, T. Hayakawa, G. F. Chen, I. Sakamoto, H. Harima, “Angle-resolved and resonant photoemission spectroscopy on heavy-fermion superconductors Ce2CoIn8 and Ce2RhIn8”, Physical Review B 71, 224516 (2005)
106 Sen Zhou, Meng Gao, H. Ding, Patrick A. Lee, and Ziqiang Wang, “Electron Correlation and Fermi Surface Topology of NaxCoO2”, Physical Review Letters 94, 206401 (2005)
107 S.-C. Wang and H. Ding, “Evolution of electronic structure in Ca2−xSrxRuO4 observed by photoemission”, New Journal of Physics 7, 112 (2005)
108 H. Matsui, K. Terashima, T. Sato, T. Takahashi, S.-C.Wang, H.-B. Yang, H. Ding, T. Uefuji, and K.Yamada, "ARPES on Antiferromagnetic Superconductor Nd1.87Ce0.13CuO4:Spin-Correlation Gap, Pseudogap, and the Induced Quasiparticle Mass Enhancement", Physical Review Letters 94, 047005 (2005)
2004
109 S.-C. Wang, H.-B. Yang, A.K.P. Sekharan, S. Souma, H. Matsui, T. Sato, T. Takahashi, C. Lu, J. Zhang, R. Jin, D. Mandrus, E.W. Plummer Z. Wang, H. Ding, “Fermi surface topology of Ca1.5Sr0.5RuO4 determined by angle-resolved photoelectron spectroscopy”, Physical Review Letters 93, 177007 (2004)
110 T. Sato, K. Terashima, S. Souma, H. Matsui, T. Takahash, H.-B. Yang, S.-C. Wang, H. Ding, N. Maeda, K. Hayashi, "Three-dimensional Fermi-surface nesting in 1T-VSe2 studied by angle-resolved photoemission spectroscopy", J. Phys. Soc. Japan 73, 3331 (2004)
111 H.-B. Yang, S.-C. Wang, A.K.P. Sekharan, H. Matsui, S. Souma, T. Sato, T. Takahashi, T. Takeuchi, J.C. Campuzano, R. Jin, B.C. Sales, D. Mandrus, Z. Wang, H. Ding, “ARPES on Na0.6CoO2: Fermi surface, extended flat dispersion, and unusual band splitting”, Physical Review Letters 92, 246403 (2004)
112 S.-C. Wang, H.-B. Yang, A.K.P. Sekharan, H. Ding, J.R. Engelbrecht, X. Dai, Z. Wang, A. Kaminski , T. Valla, T. Kidd, A.V. Fedorov, P.D. Johnson, “The quasiparticle lineshape of Sr2RuO4 and its relation to anisotropic transport”, Physical Review Letters 92, 137002 (2004)
2003
113 T. Sato, H. Matsui, T. Takahashi, H. Ding, H.-B. Yang, S.-C. Wang, T. Fujii, T. Watanabe, A. Matsuda, T. Terashima, and K. Kadowaki, “Observation of Band Renormalization Effects in Hole-Doped High-Tc Superconductors”, Physical Review Letters 91, 157003 (2003)
114 H. Matsui, T. Sato, T. Takahashi, S.-C. Wang, H.-B. Yang, H. Ding, T. Fujii, T. Watanabe, and A. Matsuda, “BCS-Like Bogoliubov Quasiparticles in High-Tc Superconductors Observed by Angle-Resolved Photoemission Spectroscopy”, Physical Review Letters 90, 217002 (2003)
115 S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.-C. Wang, H. Ding, A. Kaminski, J.C. Campuzano, S. Sasaki, and K. Kadowaki, “The origin of multiple superconducting gaps in MgB2”, Nature 423, 65 (2003)
116 H. Matsui, T. Sato, T. Takahashi, H. Ding, H.-B. Yang, S.-C. Wang, T. Fujii, T. Watanabe, A. Matsuda, T. Terashima, and K. Kadowaki, “Systematics of electronic structure and interactions in Bi2Sr2Can–1CunO2n+4 (n=1–3) by angle-resolved photoemission spectroscopy”, Physical Review B 67, 060501(R) (2003)
117 S. Nishina, T. Sato, T. Takahashi, S.C. Wang, H.B. Yang, H. Ding, and K. Kadowaki, "Zn-substitution effects on the low-energy quasiparticles in Bi2Sr2CaCu2O8+delta studied by angle-resolved photoemission spectroscopy", Journal of Physics and Chemistry of Solids 63, 1069, (2002)
118 H. Ding, J.R. Engelbrecht, Z. Wang, S.-C. Wang, H.-B. Yang, J.C. Campuzano, T. Takahashi, K. Kadowaki, and D.G. Hinks, “Superconducting coherent quasiparticle weight in high-Tc superconductivity from angle-resolved photoemission”, Journal of Physics and Chemistry of Solids 63, 2135, (2002)
119 T. Sato, H. Kumigashira, D. Ionel, T. Ito, T. Takahashi, I. Hase, H. Ding, J.C. Campuzano, S. Shamoto, "High-resolution angle-resolved photoemission study of BaCo1-xNixS2", Surface Review and Letters 9,1127 (2002)
120 Ziqiang Wang, J.R. Engelbrecht, Shancai Wang, Hong Ding, and Shuheng Pan, "Inhomogeneous d-wave superconducting state of a doped Mott insulator", Physical Review B 65, 064509 (2002)
2001
121 H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D.G. Hinks, “Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission”, Physical Review Letters 87, 227001 (2001)
122 S.H. Pan, J.P. O'Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.-W. Ng, E.W. Hudson, K.M. Lang, and J.C. Davis, “Microscopic electronic inhomogeneity in the high-T-c superconductor Bi2Sr2CaCu2O8+x”, Nature 413, 282 (2001)
123 H. Ding, S.-C. Wang, H.-B. Yang, T. Takahashi, J.C. Campuzano, and Y. Maeno, “Band reflection and surface reconstruction in Sr2RuO4”, Physica C 364-365, 594 (2001)
124 T. Sato, H. Kumigashira, T. Takahashi, I. Hase, H. Ding, J.C. Campuzano, and S. Shamoto, “Evolution of metallic states from the Hubbard band in the two-dimensional Mott system BaCo1-xNixS2”, Physical Review B 64, 075103 (2001)
125 T. Sato, T. Kamiyama, T. Takahashi, J. Mesot, A. Kaminski, J.C. Campuzano, H.M. Fretwell, T. Takeuchi, H. Ding, I. Chong, T. Terashima, and M. Takano, “Evidence for a hole-like Fermi surface of Bi2Sr2CuO6 from temperature-dependent angle-resolved photoemission spectroscopy”, Physical Review B 64, 054502 (2001)
126 J. Mesot, M. Randeria, M.R. Norman, A. Kaminski, H. Fretwel, J.C. Campuzano, H. Ding, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, I. Chong, T. Terashima, M. Takano, T. Mochiku, and K. Kadowaki, “Determination of the Fermi surface in high-Tc superconductors by angle-resolved photoemission spectroscopy”, Physical Review B 63, 224516 (2001)
127 T. Sato, Y. Naitoh, T. Kamiyama, T. Takahashi, T. Yokoya, J. Mesot, A. Kaminski, H. Fretwell, J.C. Campuzano, H. Ding, I. Chong, T. Terashima, M. Takano, and K. Kadowaki, “High-resolution angle-resolved photoemission study of Pb-substituted Bi2201”, Journal of Physics and Chemistry of Solids 62, 157 (2001)
2000
128 J. Mesot, A. Kaminski, H. Fretwel, S. Rosenkranz, J.C. Campuzano, M.R. Norman, H. Ding, M. Randeria, K. Kadowaki, “Proximity of the metal-insulator/magnetic transition and its impact on the one-electron spectral function: A doping-dependent ARPES study”, International Journal of Modern Physics B 14, 3596 (2000)
129 T. Sato, Y. Naitoh, T. Kamiyama, T. Takahashi, T. Yokoya, J. Mesot, A. Kaminski, H. Fretwell, J.C. Campuzano, H. Ding, I. Chong, T. Terashima, M. Takano, and K. Kadowaki, “Superconducting gap, Pseudogap, and Fermi Surface of Bi2201: High Energy- and Momentum-Resolution Photoemission Study”, Physica C 341-348, 2091 (2000)
130 A. Kaminski, J. Mesot, H. Fretwel, J.C. Campuzano, M.R. Norman, M. Randeria, H. Ding, T. Sato, T. Takahashi, T. Mochiku, K. Kadowaki, and H. Hoechst, “Quasiparticles in the superconducting state of Bi2Sr2CaCu2O8+x”, Physical Review Letters 84, 1788 (2000)
1999
131 J. Mesot, M.R. Norman, H. Fretwel, A. Kaminski, J.C. Campuzano, H. Ding, M. Randeria, A. Paramekanti, T. Takeuchi, T. Mochiku, T. Yokoya, T. Sato, T. Takahashi, and K. Kadowaki, “Changes in superconducting gap anisotropy with doping and implications for the penetration depth”, International Journal of Modern Physics B 13, 3709 (1999)
132 J. Mesot, M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, A. Paramekanti, H. Fretwel, A. Kaminski, T. Takeuchi, T. Yokoya, T. Sato, T. Takahashi, T. Mochiku, and K. Kadowaki, “BSCCO superconductors: Hole-like Fermi surface and doping dependence of the gap function”, Journal of Low Temperature Physics 117, 365 (1999)
133 J.C. Campuzano, H. Ding, M.R. Norman, H. Fretwell, M. Randeria, A. Kaminski, J. Mesot, T. Yokoya, T. Takeuchi, T. Sato, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks, Z. Konstantinovic, Z.Z. Li, and H. Raffy, “Electronic spectra and their relation to the (pi,pi) collective mode in high-Tc superconductors”, Physical Review Letters 83, 3709 (1999)
134 J. Mesot, M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, “Superconducting gap anisotropy and quasiparticle interactions: A doping dependent photoemission study”, Physical Review Letters 83, 840 (1999)
135 M. R. Norman, H. Ding, H. Fretwell, M. Randeria, and J. C. Campuzano, “Extraction of the Electron Self-Energy from Angle Resolved Photoemission Data: Application to Bi2212”, Physical Review B 60, 7585 (1999)
136 M.R. Norman, M. Randeria, H. Ding, and J.C. Campuzano, “Photoelectron escape depth and inelastic secondaries in high-temperature superconductors”, Physical Review B 59, 11191 (1999)
137 J. Mesot, M.R. Norman,H. Ding, and J.C. Campuzano, “Hot spots on the Fermi surface of Bi2Sr2CaCu2O8+delta: Stripes versus superstructure”, Physical Review Letters (comments) 82, 2618 (1999)
138 J.C. Campuzano, H. Ding, M.R. Norman, and M. Randeria, “Destruction of the Fermi surface in underdoped cuprates”, Physica B 261, 517 (1999)
1998
139 H. Ding, J.C. Campuzano, M.R. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, and K. Kadowaki, P. Guptasarma, D.G. Hinks, "ARPES study of the superconducting gap and pseudogap in Bi2Sr2CaCu2O8+delta", Journal of Physics and Chemistry of Solids 59, 1888 (1998)
140 M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, "Electron Self-Energy of High Temperature Superconductors as Revealed by Angle resolved Photoemission", Journal of Physics and Chemistry of Solids 59, 1902 (1998)
141 M.R. Norman, M. Randeria, H. Ding, J.C. Campuzano, "Phenomenology of Photoemission Lineshapes of High Tc Superconductors", Physical Review B 57, R11093 (Rapid Communications) (1998)
142 M.R. Norman, H. Ding, "Collective Modes and the Superconducting State Spectral Function of Bi2212", Physical Review B 57, R11089 (Rapid Communications) (1998)
143 M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, and K. Kadowaki, P. Guptasarma, D.G. Hinks, "Destruction of the Fermi Surface in Underdoped High Tc Superconductors", Nature 392, 157 (1998)
1997
144 M.R. Norman, H. Ding, J.C. Campuzano, T. Takeuchi, M. Randeria, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, "Unusual Dispersion and Lineshape of the Superconducting State Spectral Function of Bi2Sr2CaCu2O8+delta", Physical Review Letters 79, 3506 (1997)
145 T. Takahashi, T. Yokoya, A. Chainani, H. Ding, J.C. Campuzano, M. Kasai, and Y. Tokura, "Angle-resolved Photoemission Study of Sr2RuO4; An extended van-Hove singularity in non-cuprate superconductor", Physica C 282-287, 218 (1997)
146 T. Takeuchi, H. Ding, J.C. Campuzano, T. Yokoya, T. Takahashi, I. Chong, T. Terashima, and M. Takano, "ARPES studies of Pb substituted Bi2201 compounds", Physica C 282-287, 999 (1997)
147 T. Yokoya, A. Chainani, T. Takahashi, H. Ding, J.C. Campuzano, M. Kasai, and Y. Tokura, "Angle-resolved photoemission spectroscopy of non-cuprate two-dimensional perovskite superconductor Sr2RuO4", Physica B 237-238, 377 (1997)
148 H. Ding, M.R. Norman, T. Yokoya, T. Takeuchi, M. Randeria, J.C. Campuzano, T. Takahashi, T. Mochiku, and K. Kadowaki, "Evolution of the Fermi Surface with Carrier Concentration in Bi2Sr2CaCu2O8+delta", Physical Review Letters 78, 2628 (1997)
1996
149 T. Yokoya, A. Chainani, T. Takahashi, H. Ding, J.C. Campuzano, H. Katayama-Yoshida, M. Kasai, and Y. Tokura, "Angle-resolved Photoemission Study of Sr2RuO4", Physics Review B 54, 13311 (1996)
150 H. Ding, M.R. Norman, J.C. Campuzano, M. Randeria, A.F. Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, "Angle-resolved photoemission Spectroscopy Study of the Superconducting Gap Anisotropy in Bi2Sr2CaCu2O8+x", Physical Review B 54, R9678 (Rapid Communications) (1996)
151 H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis, "Spectroscopic Evidence for a Pseudogap in the Normal State of Underdoped High-Tc Superconductors", Nature 382, 51 (1996)
152 H. Ding, M.R. Norman, J. Giapintzakis, J.C. Campuzano, H. Claus, H. Wühl, M. Randeria, A.F. Bellman, T. Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, and D.M. Ginsberg, "ARPES Studies of the Superconducting Gap in High Temperature Superconductors", Spectroscopic Studies of Superconductors, SPIE 2696, 196, (1996)
153 J.C. Campuzano, H. Ding, M.R. Norman, M. Randeria, A.F. Bellman, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, "Direct Observation of Particle-hole Mixing in the Superconducting State by Angle-resolved Photoemission", Physics Review B 53, R14737 (Rapid Communications) (1996)
154 H. Ding, A.F. Bellman, J.C. Campuzano, M. Randeria, M.R. Norman, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, K. Kadowaki, G. Jennings, and G.P. Brivio, "Electronic Excitations in Bi2Sr2CaCu2O8: Fermi Surface, Dispersion, and Absence of Bilayer Splitting", Physical Review Letters 76, 1533 (1996)
1995
155 M.R. Norman, M. Randeria, H. Ding, J.C. Campuzano, and A.F. Bellman, "Polarization Selection Rules and Superconducting Gap Anisotropy in Bi2Sr2CaCu2O8", Physical Review B 52, 15107 (1995)
156 J.C. Campuzano, H. Ding, A.F. Bellman, M.R. Norman, M. Randeria, G. Jennings, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, "ARPES Studies in the Normal and Superconducting State in Bi2Sr2CaCu2O8", Journal of Physics and Chemistry of Solids 56, 1863 (1995)
157 M.R. Norman, M. Randeria, H. Ding, and J.C. Campuzano, "Phenomenological Models for the Gap Anisotropy of Bi2Sr2CaCu2O8 as Measured by Angle-resolved Photoemission Spectroscopy", Physical Review B 52, 615 (1995)
158 R. Liu, H. Ding, J.C. Campuzano, H.H. Wang, J.M. Williams, and K.D. Carlson, "Electronic Structure of Organic Superconductors k-(ET)2Cu[N(CN)2]Br, k-(ET)2Cu(NCS)2, and beta-(ET)2I3 Studied by Photoelectron Spectroscopy", Physical Review B 51, 13000 (1995)
159 M. Randeria, H. Ding, J.C. Campuzano, A.F. Bellman, G. Jennings, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, "Momentum Distribution Sum Rule for Angle-resolved Photoemission", Physical Review Letters 74, 4951 (1995)
160 H. Ding, J.C. Campuzano, A.F. Bellman, T. Yokoya, M.R. Norman, M. Randeria, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, and G. Jennings, "Momentum Dependence of the Superconducting Gap in Bi2Sr2CaCu2O8", Physical Review Letters 74, 2784 (1995)
161 R. Liu, H. Ding, J.C. Campuzano, H.H. Wang, J.M. Williams, and K.D. Carlson, "Unusual Electronic Structure Near EF in the Organic Superconductor k-[bis(ethylenedithio)tetrathiafulvalene]2Cu[N(CN)2]Br", Physical Review B 51, 6155 (Rapid Communications) (1995)
162 C. Gu, B.W. Veal, R. Liu, A.P. Paulikas, P. Kostic, H. Ding, J.C. Campuzano, B.A. Andrews, R.I.R. Blyth, A.J. Arko, P. Manuel, D.Y. Kaufman, and M.T. Lanagan, "Superconducting Energy Gap in Bi1.8Pb0.4Sr2Ca2Cu3O10+x Studied by Photoemission Spectroscopy", Physical Review B 51, 1397 (1995)
1994
163 C. Gu, B.W. Veal, R. Liu, A.P. Paulikas, P. Kostic, H. Ding, K. Gofron, J.C. Campuzano, J.A. Schlueter, H.H. Wang, U. Geiser, and J.M. Williams, "Electronic Structure and Superconducting Energy Gap in Rb3C60 Single Crystal Studied by Photoemission Spectroscopy", Physical Review B 50, 16566 (1994)
164 K. Gofron, J.C. Campuzano, A.A. Abrikosov, M. Lindroos, A. Bansil, H. Ding, D. Koelling, and B. Dabrowski, "Observation of an "Extended" Van Hove Singularity in YBa2Cu4O8 by Ultrahigh Energy Resolution Angle-resolved Photoemission", Physical Review Letters 73, 3302 (1994)
165 H. Ding, J.C. Campuzano, K. Gofron, C. Gu, R. Liu, B.W. Veal, and G. Jennings, "Gap Anisotropy in Bi2Sr2CaCu2O8+delta by Ultrahigh-resolution Angle-resolved Photoemission", Physical Review B 50, 1333 (Rapid Communications) (1994)
166 J.C. Campuzano, K. Gofron, H. Ding, R. Liu, B. Dabrowski, and B.W. Veal, "Photoemission from the High Tc Superconductors", Journal of Low Temperature Physics 95, 245 (1994)
1993
167 K. Gofron, J.C. Campuzano, H. Ding, C. Gu, R. Liu, B. Dabrowski, B.W. Veal, W. Cramer, and G. Jennings, "Occurrence of Van Hove Singularities in YBa2Cu4O8 and YBa2Cu3O6.9", Journal of Physics and Chemistry of Solids 54, 1193 (1993)
168 C. Gu, B.W. Veal, R. Liu, H. Ding, A.P. Paulikas, J.C. Campuzano, P. Kostic, R.W. Wheeler, and H. Zhang, "Photoemission Studies of Zn, Co, and Gd Substituted YBa2Cu3O7-delta", Journal of Physics and Chemistry of Solids 54, 1177 (1993)
169 M. Lindroos, A. Bansil, K. Gofron, J.C. Campuzano, H. Ding, R. Liu, and B.W. Veal, "Signature of the CuO2 Plane Related Bands in YBa2Cu3O6.9 as Seen by Angle-resolved Photoemission", Physica C 212, 347 (1993)
170 Y. Zhou, X. Chen, J.C. Campuzano, G. Jennings, K. Gofron, H. Ding, and D.K. Saldin, "Reconstruction of the 3-D Atomic Structure of CoSi2 (111) by Photoelectron Holograph", Materials Research Society Symposium Proceedings, April 12-17, San Francisco.
1992
171 J.C. Campuzano, K. Gofron, R. Liu, H. Ding, B.W. Veal, and B. Dabrowski, "Fermiology of YBa2Cu4O8", Journal of Physics and Chemistry of Solids 53, 1577 (1992)
172 A. Bansil, M. Lindroos, K. Gofron, J.C. Campuzano, H. Ding, R. Liu, and B.W. Veal, "First Principles Angle-resolved Photoemission Intensity Calculations for YBa2Cu3O7 (001)-surface", Journal of Physics and Chemistry of Solids 53, 1541 (1992)
荣誉奖励:
1、1995年获美国威斯康星同步辐射中心 Wisconsin Synchrotron Radiation Center 的阿拉丁光源奖。
2、1999年获美国的斯隆奖。
3、2003获美国波士顿学院 Boston College 杰出科研成就奖。
4、2005年获中国国家杰出青年科学基金B类。
5、2008年入选首批国家“千人计划”。
6、2009年获中国科技大学"严济慈讲席教授"称号。
7、2010年获中国侨界“创新人才”贡献奖。
8、2014年获汤森路透中国引文桂冠奖和科研团队奖。
学术交流:
在国际学术会议作邀请报告超过70次。
1. “Important aspects related to the pairing mechanism of iron-based superconductors revealed by ARPES”, seminar, MIT, December 2008
2. “Important aspects related to the pairing mechanism of iron-based superconductors revealed by ARPES”, seminar, Brookhaven National Lab, December 2008
3. Invited talk, “How much can we say about the pairing mechanism of iron-based superconductors from ARPES?”, Hong Kong Forum of Physics 2008, Hong Kong, December 2008
4. “Probing novel superconductors through photoelectrons”, seminar, Shanghai Jiao Tong University, October 2008
5. “Pairing symmetry of iron-based superconductors revealed by ARPES”, seminar, Tsinghua University, October 2008
6. Invited talk, “Pairing symmetry of iron-based superconductors revealed by ARPES”, Beijing International Workshop on Iron (Nickel)-Based Superconductors, October 2008
7. “Pairing symmetry of iron-based superconductors revealed by ARPES”, seminar, BESSY, Germany, September 2008
8. “Pairing symmetry of iron-based superconductors revealed by ARPES”, seminar, University of Paris South, France, September 2008
9. “Probing novel superconductors through photoelectrons”, seminar, Ecole Polytechnique, France, September 2008
10. “Pairing symmetry of iron-based superconductors revealed by ARPES”, seminar, PSI, Switzerland, September 2008
11. “The new iron-based high temperature superconductors”, colloquium, Boston College, September 2008
12. “The new iron-based high temperature superconductors”, seminar, MIT, September 2008
13. Invited talk, “Superconducting gaps in Ba1-xKxFe2As2 measured by ARPES”, Hangzhou Mini-workshop on iron based superconductivity, August 2008
14. Invited talk, “Probing novel superconductors through photoelectrons”, Hefei Synchrotron Users Meeting, July 2008
15. Invited talk, “Pairing symmetry of iron-based superconductors revealed by ARPES”, International Workshop of Correlated Materials, Weihai, July 2008
16. Invited talk, “Recent ARPES studies of high-Tc superconductors”, 2008 Beijing Forum on High-Temperature Superconductivity, Zhajiajie, July 2008
17. Invited talk, 6th International Symposium on “Exploring New Science by Bridging Particle-Matter Hierarchy”, Sendai, Japan, December 2007
18. “Probing high temperature superconductors through photoelectrons”, Condensed Matter Physics Forum Talk, Institute of Physics, Beijing, China, August 2007
19. “Recent ARPES studies of high-Tc cuprates”, seminar, Hong Kong University, Hong Kong, August 2007
20. “Evolution of Fermi surface and pseudogap in chemically substituted high-Tc cuprates”, invited talk, 2007 Spectroscopies in Novel Superconductors, Sendai, Japan, August 2007
21. “Angle-resolved photoemission studies on NaxCoO2”, invited talk, German Physical Society Meeting, Regensburg, Germany, March 2007
22. “ARPES studies on metallic NaxCoO2”, seminar, Rutgers University, October 2006
23. “Overview of ARPES studies on metallic NaxCoO2”, invited talk, First International Workshop on the Physical Properties of Layered Cobaltates, Orsay, France, July 2006
24. “Systematic ARPES studies on NaxCoO2”, invited talk, 8th International Conference on Materials and Mechanisms of Superconductivity, Dresden, Germany, July 2006
25. “Recent ARPES Studies on electron-doped high-Tc cuprate”, The 5th Joint Meeting of Chinese Physicists World-wide, Taipei, June 2006
26. Three invited talks, 4th Beijing Forum on High-Tc superconductors, Beijing, China, June 2006
27. “ARPES studies on NaxCoO2”, invited talk, Gordon Research Conference on Superconductivity, Buellton, CA, January 2006
28. “ARPES studies on NaxCoO2”, seminar, Advance Light Source, August 2005
29. “Quasiparticles in high-Tc cuprates”, invited talk, 3rd Beijing Forum on High-Tc superconductors, Beijing, China, June 2005
30. “ARPES studies of NaxCoO2”, invited talk, 4th Asia Pacific Workshop of Strongly Correlated Materials, Beijing, China, May 2005
31. “ARPES studies on NaxCoO2”, seminar, University of Kentucky, May 2005
32. “ARPES studies on NaxCoO2”, seminar, Argonne National Laboratory, April 2005
33. “Probing novel superconductors through photoelectrons”, colloquium, University of Illinois at Chicago, April 2005
34. “ARPES studies on NaxCoO2”, invited talk, 2005 March Meeting of the American Physical Society, Los Angeles, CA, March 2005
35. “ARPES studies of novel superconductors and related materials”, seminar, Oak Ridge National Laboratory, November 2004
36. “Probing novel superconductors through photoelectrons”, colloquium, University of Tennessee at Knoxville, November 2004
37. “ARPES studies of NaxCoO2”, invited talk, The 4th International Workshop on Novel Quantum Phenomena in Transition Metal Oxides, Sendai, Japan, November 2004
38. “ARPES Studies of Ca2-xSrxRuO4”, invited talk, International Symposium of Spin-Triplet Superconductivity and Ruthenate Physics, Kyoto, Japan, October 2004
39. “Probing novel superconductors through photoelectrons”, seminar, Institute of Physics, Chinese Academy of Sciences, August 2004
40. “Angle-resolved Photoemission Studies of Correlated Electronic Materials”, invited talk, SNS2004, Sitges, Spain, July 2004
41. “Probing high-Tc superconductors through photoelectrons”, invited talk, 2nd Beijing Forum on High-Tc superconductors, JingGangShan, China, July 2004
42. “Angle-resolved Photoemission Studies of Correlated Electronic Materials”, invited talk, The Forth Joint Meeting of Chinese Physicists World-wide, Shanghai, China, June 2004
43. “Angle-resolved Photoemission Studies of Correlated Electronic Materials”, invited talk, 2nd Asia-Pacific Physics Workshop, Hong Kong, June 2004
44. “Angle-resolved Photoemission Studies of Correlated Electronic Materials”, invited talk, SRC NSF Review, Stoughton, WI, March 2004
45. “Angle-resolved Photoemission Studies of Correlated Electronic Materials”, invited talk, Boston College Workshop on Novel Materials, Boston, MA, March 2004
46. “Probing high-Tc superconductors through photoelectrons”, colloquium, Boston College, October 2002
47. “Probing high-Tc superconductors by photoelectrons”, colloquium, University of Houston, September 2002
48. “ARPES study of quasiparticles of 2D correlated electron systems”, seminar, Texas Center for Superconductivity and Advanced Materials, September 2002
49. “ARPES study on high-Tc cuprate BSCCO”, Beijing Advanced Workshop on High-Tc Superconductivity, invited talk, Beijing, China, June 2002
50. “ARPES study on quasiparticles of 2D correlated systems”, seminar, Brookhaven National Laboratory, Uptown, NY, April 2002
51. “Quasiparticles in high-Tc superconductor: a recent photoemission study”, invited talk, International Workshop on the Mechanism of High Temperature Superconductors, Lijiang, China, June 2001
52. “Quasiparticles in high-Tc superconductor: a recent photoemission study”, invited talk, SNS 2001, Chicago, May 2001
53. “Quasiparticles in high-Tc superconductor: a recent photoemission study”, Colloquium, Sherbrooke, Canada, April 2001
54. “Quasiparticles in high-Tc superconductor: a recent photoemission study”, invited talk, Workshop on Magnetic Superconductor, Boston College, April 2001
55. “Using angle-resolved photoemission to probe high temperature superconductors” and “Recent ARPES results on high-Tc superconductors”, invited talk, 5th APCTP winter workshop on strongly correlated systems, Seoul, Korea, February 2001
56. “Recent photoemission results on high Tc superconductors”, invited talk, Third International Conference on New Theories, Discoveries, and Applications of Superconductors and Related Materials, Honolulu, January 2001
57. “Recent ARPES results in high-Tc superconductors”, seminar, MIT, October 2000
58. “Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission”, invited poster, High Tc 2000 Conference, Santa Barbara, CA, August 2000
59. “Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission”, Invited talk, The Third Joint Meeting of Chinese Physicists World-wide, July 2000
60. “Using photoemission to probe high temperature superconductors”, Colloquium, Tohoku Univ., Japan, July 2000
61. “Recent ARPES results in high-Tc superconductors”, seminar, Tokyo Univ., Japan, July 2000
62. “Recent ARPES results in high-Tc superconductors”, seminar, Inst. of Solid State Physics, Japan, July 2000
63. “Coherent quasiparticle weight in Bi2Sr2CaCu2O8+x”, invited poster, Gondon Conference – strongly correlated systems, Plymouth, NH, June 2000
64. “Recent Photoemission Results on Novel Superconductors”, New Theories, Discoveries, Applications of Superconductors and Related Materials, Las Vegas, June 1999
65. “Angle-resolved Photoemission of High Temperature Superconductors”, Workshop on Experimental Analysis of Oxide Superconductor”, Beijing, China, May 1999
66. “Recent ARPES Results from Underdoped Bi2Sr2CaCu2O8+x”, invited talk, 1998 March Meeting of the American Physical Society, Los Angeles, CA, March 1998
67. Correlated Electron Systems Workshop, Stoughton, WI, October 1997
68. Spectroscopies in Novel Superconductors, Cape Cod, MA, September 1997
69. High Temperature Superconductivity Workshop, Telluride, CO, August 1997
70. Gordon Conference: X-ray Physics, Plymouth, NH, August 1997
71. Pseudogap of High-Tc Materials Workshop, Chicago, IL, May 1997
72. 5th International Conference Materials & Mechanisms of Superconductivity High-Temperature Superconductors, Beijing, China, February 1997
73. SPIE Conference, San Jose, CA, January 1996
74. Synchrotron Radiation Center Users Meeting, Stoughton, WI, October 1995
为中国科技发展贡献“超导”力量
——记“千人计划”入选者、中科院物理所研究员丁洪
5月27日,丁洪(右)在实验室里与同事、学生交流。 新华社记者 金立旺 摄
新华网北京6月4日电(记者吴晶晶、余晓洁)丁洪,中科院物理所研究员、北京凝聚态国家实验室首席科学家、国家“千人计划”首批引进专家。2008年,他辞去美国终身教授职位回国,在铁基高温超导领域取得令国际同行瞩目的成就。
“我握住了中国向全球高端人才伸出的橄榄枝。时至今日,我更加确定当时的决定是正确的。”丁洪说。
为了心中的“中国梦”
2007年是丁洪旅美生活的第18年,他已从博士、博士后、助理教授、副教授,一直做到终身制正教授。丁洪实现了很多留学学子眼中标准的“美国梦”,但是他并不满足:“我想做些更大的事情,发挥更大的作用。”
丁洪一直有一个想法:“我们出去这么长时间,当工作、家庭、待遇都不错时,是不是还有更高的追求?确实有,我们有一颗中国心,应该关心中国的发展,这个想法可能就是‘中国梦’。”
这年11月,丁洪接到了一个来自祖国的电话,那是来自中国科学院物理研究所邀请加盟的电话。
在物理所的大力邀请下,丁洪回国考察,不仅了解了物理所发展尖端科技的决心和远见,也看到了国内科研条件的改善,祖国未来发展的强劲态势和对人才的高度重视。
他对物理所的橄榄枝动心了。“当时我有个预判,未来十年将是中国科学发展的黄金时代。”
丁洪是一个想好事情就要立刻付诸实际的人。他拒绝了美国大学的高薪挽留和香港大学的邀请,连搬家、房子处理、孩子上学的问题都未多加考虑,很快全职回国,成为美国物理学界第一个辞去终身教职的教授。
“回来主要是因为看好中国的发展前景,特别是看好中国对于基础科学支撑力度的持续增长和未来走势。”他说,“中科院物理所提供的有利条件和学术氛围,也非常吸引人。”
有人曾对丁洪说,应该留一条“后路”,全职回国的风险很大。但丁洪不怕:“要是连这一点信心都没有的话,我就不回来了。”
抓住铁基高温超导的机遇
丁洪在回国之初做好一切从零开始的准备,他甚至已做好三年之内不发表科研论文的打算。
然而成功总是垂青那些有准备的人。2008年,一种新型高温超导体——铁基高温超导体被发现,丁洪在国外已经从事十几年的高温超导体研究,他敏锐地抓住了这一机遇。
高温超导体研究在科技、工业、国防等领域具有重要意义,因此也成为21世纪的科研新宠。铁基超导体拓宽了人们对凝聚态物质研究的视野,其超导机理却是一个未解的难题。
丁洪带领团队利用角分辨光电子能谱技术,发现了铁基超导体中依赖费米面的无节点的超导能隙。这被国际上认为是对铁基超导体S-波对称性的建立具有奠基性意义的工作。
此后,丁洪小组和多个研究小组合作对铁基超导体进行了更深入的研究,取得了一系列重要研究成果,五年多来在国际重要杂志上发表了50多篇学术论文,比在国外发表的频率还要高。这些文章被SCI引用超过1000次。
在2013年度国家科学技术奖励大会上,丁洪所在的物理所团队,凭借铁基高温超导体研究方面的突出贡献,荣获国家自然科学奖一等奖。
铁基超导体研究让丁洪回国后的事业大放异彩,他谦虚地把这归结为“运气好”。
但在同事和学生眼里,对他的“运气好”却有着另外的解读:
“丁老师非常敬业,经常晚上11、12点还在和我们讨论问题。”
“只要实验装置一开始运转,几天几夜在实验室里都是很正常的事。”
“他刚回国的头两年,头发白得特别快……”
丁洪的三个梦想
现在,丁洪除了做科研,还将很大一部分精力放在推动国家大科学装置和综合性国家科学中心建设上。
他说自己有三个梦想:一是“梦之线”,就是在上海同步辐射光源上建设一条性能指标世界最先进的光束线站,目前进展良好,即将验收。二是“梦之环”,就是建设世界上亮度最高的高能同步辐射光源——北京先进光源,预计将在“十三五”启动。三是“梦中心”,就是建设中国第一个综合性国家科学中心——北京综合研究中心。
“我希望能以此带动国内整个研究水平和能力的提高。能力上去了,科研才有创新可言。我希望2020年实现这些,现在看来非常有可能。”丁洪对此充满信心。
“千人计划”专家的身份让丁洪觉得自己更多了一份责任。他运用多年的海外工作经验和人脉,积极促进中科院和美国、瑞士等国家和机构的合作。他认为,中国要做科技强国,就要多参与基础性科学研究的国际合作,才能在国际上有话语权。
作为第一批全职回国的高端人才,丁洪影响和带动了更多人为国效力。他的学生苗虎原打算出国,别人告诉他:“你这个领域最好的老师已经回国。”苗虎因此也选择留在国内发展。
丁洪同时希望自己在国外的经验能为中国科研体制注入新的元素。“目前国内的课题大都时间比较短,而且每年都需要考评,这很难让科研人员静下心来。”他还建议要给科研人员更多自主权,并鼓励科研人员努力转化成果。
来源: 新华网 2014年06月04日 09:26:48
《科学时报》青年人才成长故事系列报道之七:丁洪
丁洪,中国科学院物理研究所研究员,北京凝聚态国家实验室首席科学家,国家首批“千人计划”入选者。1990年毕业于上海交通大学,1995年获美国伊利诺伊大学芝加哥分校物理学博士。1995年9月至1998年8月在美国Argonne国家实验室做博士后。1998年9月至2008年5月在美国Boston College大学物理系历任助理教授、副教授、教授。
18年的时间足以让一个人习惯陌生的环境,也足以让一个人在思索中找到未来的目标。
1990年从上海交通大学毕业后,丁洪便开始了长达18年的旅美生活。
“我记得特别清楚的一件事是,在博士学位论文答辩的时候,我的一位答辩导师跟我说,做一名科学家,也许你未来很多年的工作成绩还不如做学生的这段时间,所以要善于抓住机遇。”结束了18年的美国生活,如今的丁洪已是中国科学院物理所研究员、北京凝聚态国家实验室首席科学家,他全职回国后在铁基高温超导领域作出的成就令同行瞩目。
一个改变命运的电话
2007年11月的一个电话,使丁洪原本平静的美国大学教授生活泛起了一丝涟漪。
“这个电话是中科院物理所打来的,目的是想请我加盟”。然而,此时的丁洪已经参加了香港大学的面试。此前,由于美国在科研经费支持力度上的下滑和香港大学一再的邀请,丁洪开始琢磨起了跳槽。
“答应去香港大学面试的原因,主要是因为香港教授的待遇很好,而且科研条件也非常好。”丁洪觉得,换一个工作地点,也许自己能发挥更大的作用。
不过,中科院物理所的这个电话改变了他的计划。
“我当时一点准备都没有,更从来没有考虑过要到物理所工作的问题”。但是,就是这样一个电话让丁洪的未来发生了改变。
在这次长长的通话中,中科院物理所把他在加盟之后的科研环境、工资待遇等问题全盘托出,这让丁洪颇为吃惊。其实,在已得知丁洪有跳槽的想法后,中科院物理所领导班子就开会讨论作出了人才引进的决定。
然而,这个电话的到来让丁洪左右为难。一方面,由于经常的往来合作,中科院物理所的各种情况丁洪已非常熟悉;另一方面,物理所在给他的工资待遇高出其他研究人员很多,这让丁洪难以接受。
“同事间是合作的关系,如果我的工资比别人高太多,我认为是不利于团队内部和谐的,所以我当时就说了‘No’。可物理所的领导跟我说,可以过来看看情况再决定。我来了之后发现,物理所对于引进人才非常有诚心,科研条件也很好,确实能做一番事业,我挺感动的。”丁洪的态度从“No”转变成了“Yes”。
谈好了工作上的细节问题,丁洪剩下最大的顾虑就是家庭。
在从物理所谈好回到美国之后,丁洪就和夫人商量起回国工作的问题。“在回国工作这件事上,我给了我太太一票否决权。”他笑着说。
“我问她的态度是什么,同时也和她说‘你有一票否决权’,如果她不同意我回国,我会尊重她的决定。”不过,在这个问题上,丁洪的顾虑是多余的,他的夫人认为,如果回国能有这么好的科研环境,应该认真考虑。
当时,香港大学也向丁洪发出了聘书,美国方面也在用高薪挽留他。不过,在对比了科研支持力度、科研氛围和未来发展前途后,丁洪毅然决定来到中科院物理所。
“我从No到Yes的转变非常快。”丁洪是一个想好事情就要立刻付诸实际的人,“2008年2月我就已经想好回国了,很多人觉得我作决定太快了。我跟他们说,在关键问题想好之后,细节问题就不用多想。”
确实如此,实际上丁洪在作了回国的决定后,甚至都没有想好如何搬家,当时住的房子怎么处理,孩子上学的问题怎么办等。
“我太太唯一的要求就是孩子的教育问题,所以我们第二次回来的时候,一起去看了北京的学校,在把这个事情搞定之后,就决定搬家了。”2008年5月,丁洪开始搬家回国。“我对国内很有信心,对自己也很有信心。”
有人曾对丁洪说,应该留一条“后路”,全职回国的风险很大,但丁洪不怕,“要是连这一点信心都没有的话,我就不要回来了。现在看来,回国是很正确的”。
幸运的铁基超导
回国后的第一年,组建队伍让丁洪花费了很多精力。
“在美国我有一名博士后,还有4名研究生,但是他们都即将毕业,不可能跟我一起回国。已经毕业的学生有的娶了外国太太,回来更不现实。所以没有能带一个队伍回来。”丁洪回忆说。
从自己搭建实验室开始,丁洪一般在夜里三四点才能睡觉休息。“很忙很忙,也确实挺辛苦的”。由于当时的实验设备不齐全,而超导实验需要很多大科学装置,丁洪就向国外的同步辐射中心和一些合作者申请使用设备。
那是刚回国的第二天,在一个学术会议上丁洪听说有一个实验样品非常好,他当即就和日本的合作者说:“我去你那里做一些实验好不好?”会议一开完,丁洪就买了机票飞到日本。
“当时样品刚出炉,我带着这个样品在日本待了8天,这8天里我只去旅馆住了两个晚上,剩下的时间都在实验室度过。”前后两周的时间,丁洪不但把实验完成,论文也写好等待发表。“后来这篇文章有很高的影响,现在引用率已经超过260。”
当时,中国在铁基超导材料方面的研究是国际领先水平,丁洪也集中精力做铁基超导这种新型高温超导体的实验。其实,他之前十几年的研究对象一直也是一种高温超导体——铜氧化合物。
“我把它归结为运气很好,做铁基超导我们取得了很多成果,这是让我感到意外的事情。”丁洪抓住了做铁基超导的机遇,在回国1年多的时间里,发了十几篇文章,并且影响力非常大。
高温超导电性一直是凝聚态物理学领域的热点研究课题之一。最近发现的高达55K的铁基超导体结束了铜氧化合物在超导转变温度高于40K的领域内一统天下的局面。作为新型高温超导体的铁基超导体,由于其丰富的物理性质大大拓宽了人们对凝聚态物质研究的视野,但相关的超导机理却是凝聚态物理领域的难题之一。
丁洪和他的团队和日本东北大学高桥隆小组合作,利用角分辨光电子能谱技术,发现了铁基超导体中依赖费米面的无节点的超导能隙,该文章于2009年8月被ScienceWatch评为在科学领域内的Fast Breaking Paper,被国际同行认为是对铁基超导体的s-波对称性的建立具有奠基性意义的工作。
在此后1年多,丁洪小组和多个研究小组合作对铁基超导体进行了更深入的研究,取得了一系列重要的研究成果,其中最突出的是用多个有说服力的实验结果揭示了反铁磁波矢相连的带间散射和费米面近似嵌套是导致铁基超导的最根本原因。这已成为被越来越多的人所接受的共识,并被2010年3月Science的评述文章作为正在形成的对铁基超导机理共识的关键实验证据。
“一直跟我一起工作的同事说,你刚来的时候头发白得很快。那一年的确很辛苦。”建设实验室、建设队伍、作实验、写文章,丁洪回国后的第一年非常辛苦,但他过得也很充实,他用6个字形容回国后的生活——“充实、高效、愉快”,这也是丁洪和他的团队的真实写照。
丁洪主要用角分辨光电子能谱研究高温超导体和其他强关联电子材料的电子结构和电子激发性质。近年来,他在国际重要杂志上发表了100多篇学术论文,其中6篇发表在《自然》杂志上,28篇发表在《物理评论快报》杂志上。这些文章被SCI引用超过6000次。
挑战科学 挑战自然
1986年,铜氧化合物高温超导性质被发现,直到现在还没有解决其机理问题;而铁基超导体刚刚发现两年,丁洪的研究就作出了重要的贡献。
“铜氧化合物主要是有更强的电子间的相互作用,对于理解它的多体效应是很难的,现在还没有一个共识,是一个世界性难题”。目前,丁洪是科技部“973”量子调控项目的首席科学家。他希望,对于铁基超导的研究能够启发科学家对铜氧化合物超导的研究,而且,对铁基超导的研究成果会给人们在寻找超导体上有很大的启发。
如今,实验室的初步建设已经完成,研究工作步入良性发展,丁洪又开始琢磨起协助中科院建设大科学装置和北京基础科学基地的事。
“因为在美国的时间很长,我对美国的国家实验室比较熟悉,对欧洲、日本的实验室也比较熟悉,对实验室布局等方面有一定的掌握。事实上,中国也急需建设综合性大型国家实验室。”
现在,丁洪正在促进中科院基础局和美国能源部基础科学局的全面合作。“因为中美在物理合作研究方面,现在只有高能物理领域有正式的合作,我们想拓宽其他领域。”2009年,为了促进物理所、高能所、技术局等的对外合作,丁洪分别去了4次美国、4次欧洲,考察他们在这方面的情况。
之所以忙一些科研之外的事情,丁洪是希望能把中国整个的科研水平和科研氛围做好。
“中国现在大量的精密仪器是靠进口,我想改变这个状况,所以有些仪器我们自己也在研制。海外的一些华人在精密仪器领域很有成就,可以整合力量,使中国在精密仪器方面能提升。”丁洪说。
谈到生活,丁洪也变得轻松了很多。“我的爱好很多,尤其喜欢去海边潜水,我到过世界很多地方去潜水。我曾从百慕大海底的一个沉船下潜过去,这艘沉船是在二战时候被击沉的,沉船处大概有30多米深。”
现在,丁洪的家人也适应了回国的生活并且很开心。“我们一家都喜欢旅游,所以我每年至少要抽出1周到2周的时间来陪家人出去旅游”。
“现在,很多在国外的华人科学家都有回国发展的想法,但是,大部分人由于各种原因还没能付诸实施。以前,中国是‘小米加步枪’,而现在正在形成‘机械化部队’”,丁洪认为,现在中国的科研大环境比较好,特别是大科学工程,上海同步辐射光源的建成、广东散裂中子源的动工和北京新光源的筹备,让中国的发展空间比国外更大。而他自己的经历也说明,有能力的科学家在国内同样可以有很好的发展。
“别人问我螃蟹好吃不好吃,我说,你们都知道螃蟹是很好吃的。”丁洪笑着说,“对中国未来科研的发展,我非常看好。”
《科学时报》 (2010-6-1 A2 要闻)
丁洪在实验室讲述自己的科研梦想。记者 佘惠敏 摄
30年前,丁洪因获得全国青少年计算机编程大奖,被保送到上海交通大学。入学第二年,他却放弃了热门的计算机专业,选择了更为基础的物理专业。大学毕业后,丁洪赴美留学。
38岁时,丁洪获得美国波士顿大学物理系的终身教职。获得正教授职位后,丁洪因病做了大腿髋关节矫正的大手术,不得不在床上躺了3个多月。这段时间,他想起年轻时要在科技界做一番大事的梦想,再考虑已经取得的成就,萌生了回国的念头。
在中科院物理所,丁洪见到了一位跟他经历极其相似的前辈——于渌院士,“他对我讲了他的感受,说还是回国发展好。第一要自己做事业,第二要为国家做事情。和他谈完之后,我的心就定了。”
2008年,丁洪辞职,举家回国。数月后,国家启动“千人计划”,丁洪成为第一批入选者。
丁洪的专业方向是超导的机理研究,这需要大型的科研实验装置。决定回国时,他本来做好了沉寂数年的心理准备。“美国的大装置很齐全,中国才刚刚开始。”回国第二天,丁洪听说物理所有一个铁基高温超导体的实验样品非常好,他当即就和日本合作者联系做实验。
丁洪带着刚出炉的样品在日本待了8天,8天里只去旅馆住了两个晚上,其余时间都泡在实验室。利用日本的实验装备,丁洪做完实验,写好了一篇颇具影响力的论文,打响了回国后的第一炮。
“回国前,我研究的是另一种高温超导体——铜氧化合物。”丁洪说,2008年,新一代高温超导家族——铁基高温超导体诞生。丁洪抓住了做铁基超导的机遇,回国一年多就发表了10多篇文章,影响力很大,“做铁基超导取得了很多成果,这是让我感到意外的事。回国第一年,就比我在美国发表论文还频繁。”
超导是指物质的电阻在一定条件下变为零的现象,需在靠近绝对零度(零下273摄氏度)的极低温度下才能实现。高温超导材料则是指在相对较高的温度(>40K)以上超导的材料。铁基高温超导材料被发现后,各国间科研竞争十分激烈。
对研究人员来说,最直观的影响是睡眠时间减少。“丁老师一般12点之前不会停止工作,经常夜里十一二点还和我们讨论问题。”丁洪的博士生苗虎说,2009年他大学毕业时本计划出国,国外大学老师说,“你这个方向最好的老师回中国了”,于是他就慕名而来,投入丁洪门下。
在学术界,铁基超导的机理研究有两大流派:一派认为铁基超导与原来的普通超导类似,是通过弱相互作用形成的,另一派认为铁基超导的机理是全新的强相互作用。“现在我分配给苗虎的一个实验找到了强相互作用的直接实验证据,论文刚写好,正准备投稿。”接受记者采访时,丁洪高兴地说。
“我们的目标就是高温超导机理问题的最终解决。我们想证明强相互作用是正确的,已经有一系列的实验证据来证明。我们还想将此机理延伸到其他超导体,比如铜氧化合物的超导。”丁洪说,超导现象是对人类智慧的挑战,“随着超导温度的不断提高,如果能实现常温超导,那将是革命性的突破。从原理上讲,常温超导没有使之不能实现的阻碍。”
回国6年,丁洪“自己做事业”的科研梦想正在实现,而他“为国家做事情”的梦想也进展顺利。他把这个梦想概括为“梦之线、梦之环、梦中心”。
“在美国,我接触最多的是同步辐射光源。建设一条世界上最好的光束线站,是我的夙愿。”丁洪说。
回国后,这个梦想有了实现的机会。在物理所、中国科学院和财政部的大力支持下,丁洪很快申请到了重大科研装备研制项目,着手在世界最先进光源之一的上海同步辐射光源上建一条光束线站。这条“梦之线”已于去年12月建成,现处于调试阶段,预计今年10月可通过验收。“这条线站能量分辨率的设计指标是目前国际最高水平的5倍,验收指标是2倍。”丁洪得意地说。
“梦之环”是指北京先进光源。这是丁洪协助中科院高能物理研究所向国家发改委提出的世界上亮度最高的高能同步辐射光源项目,将可能在“十三五”时期正式建设。
“梦中心”是指中科院和北京市在怀柔筹建的北京综合研究中心,这将是中国第一个综合性的国家科学中心,包括多个大型科学装置和相应的多学科交叉研究平台。回国之后,丁洪就积极参与北京综合研究中心的整体规划,为打造这一“科技航母”,他参加了近百次研讨会,做了充分的准备工作。
“梦之线、梦之环、梦中心概括了我回国后的奋斗目标,我坚信在不久的未来,自己的‘中国梦’一定能够实现。”46岁的丁洪感慨地说,“祖国是一片成就事业的热土,也将是我的梦想开花结果的圣地。”
2015-12-10
47岁的丁洪坐在我们面前,一头乌黑的头发里面已经明显掺杂了星星点点的银丝。这些早生的白发记载了他归国七年来的辛苦和操劳。
“丁老师非常敬业,经常凌晨12点了,还在回复我们的邮件,和我们讨论学术问题。”
“老丁这个人,只要实验装置一开始运转,几天几夜呆在实验室里不出来,那都是家常便饭!”
他的同事和学生们如是说。
丁洪却极少会提及他在科研工作中的艰辛和困难,在他看来,作为一名科学家,遇到些困难都是科研道路上极为正常的事。相反,他总在感慨自己科研之路到目前为止都很顺利,即便是他在高温超导体研究方面以及不久前发现“外尔费米子”的存在这种国际性物理问题上取得了重大突破,也被他归结于自己的“运气不错”。
然而在他这一句云淡风轻的“好运气”背后,却藏着多少不为人知的工作量和各种辛苦。
丁洪很健谈,思维很跳跃。他和我们谈起他的“三个梦想”;谈起他“放养”的学生们又取得了哪些突破;谈起作为实验学家,他和那些理论学家们的对话;谈起他年轻时敢于向学术权威发起挑战;谈起他的各种国际化的跨界合作??
最终话题还是不可避免地回到了不久之前国际上众多科研机构为发现有“幽灵粒子”之称的外尔费米子而展开的那场激烈的科研竞赛。最终,中科院物理所的团队从理论预言、材料生长到实验观测都是独立和同时完成,而丁洪正是“捕捉”到“幽灵粒子”的那个人。时至今日,他依然难掩兴奋:“这是今年物理学的一个重大发现!具有里程碑的意义!”
捕捉“幽灵粒子”的国际竞赛
“幽灵粒子”——听上去就是一个充满噱头的名词。而事实上,它确实也是让众多物理学研究者前仆后继苦苦寻找的奇特物质。
时间倒溯回1928年,狄拉克提出描述相对论电子态的狄拉克方程。一年后,德国科学家外尔指出,狄拉克方程质量为零的解描述的是一对重叠在一起的具有相反手性的新粒子,这就是“外尔费米子”。然而这预言中的粒子却像幽灵一般足足困扰了科学家们80多年,他们始终无法在实验中观测到这种粒子。中微子曾经在很长时间内被认为是外尔费米子,但是后来因发现其质量不为零而放弃。
虽然在宇宙中寻找外尔费米子的基本粒子异常困难,但近年来拓扑材料的发现和快速发展使得外尔费米子作为固体材料中的“准粒子”成为了可能性。这种在“固体宇宙”中寻找外尔费米子的准粒子成为当今凝聚态物理最前沿的研究对象之一,也是世界各国物理学家竞相追逐的目标。为了能够找到它,全世界的科学家争相创造可能存在外尔费米子的人工环境。
中科院物理所自然也没有放松对于“幽灵粒子”的搜寻力度。早在两年前,物理所的理论研究团队就意识到TaAs家族材料体系可打破中心对称的保护,实现两种“手性”电子的分离。这一系列材料能自然合成,无需进行掺杂等细致繁复的调控,更利于实验发现。去年底,他们将此理论预言在arXiv网站率先向全世界公开。该成果立即受到同行的注目,国际上众多实验小组都投入到了竞赛般的实验验证工作中。
就在2015年的1月5日,中科院物理所的电子邮箱里收到了一封“战书”,这封来自美国普林斯顿大学Hasan小组的信,明确告知他们也在进行类似的研究,同时也将自己的科研论文张贴到了arXiv网站上。这让丁洪敏锐地嗅到了一股硝烟的味道,他意识到:捕捉“幽灵粒子”的国际竞赛已经进入到白热化阶段了。
物理所团队成员们都感觉到了这种竞争激烈的气氛,每个人都开始夜以继日的加快速度,与同行竞赛,与时间竞赛。物理所强大的团队力量在此时发挥了作用,三个研究小组分别从理论、材料、实验三个环节入手,团结协作,环环相扣。捕捉“幽灵粒子”就好像在进行一场战役,有情报侦察、有后勤补给,也有前方冲锋,“哪个环节出了问题,外尔费米子都不可能这么快地被成功发现。这是我们团队精诚合作的结果,彰显了中科院物理所的整体实力!”丁洪谈到当时的经过,依然热血沸腾。
丁洪的团队负责的是实验环节。这个小组的工作实际上是最辛苦的,因为要做同步辐射,一天24个小时都要工作,经常是通宵达旦。丁洪小组利用他们刚在上海光源建成的“梦之线”同步辐射X射线对TaAs晶体进行了精确地测量,从材料中激发出来的电子的能量和动量,就能反推出晶体材料的电子结构。他们在2014年10月取得了初步数据,并在2015年初取得了高质量的数据,第一次观测到TaAs表面态存在费米弧。而只要观测到费米弧,就能断定外尔费米子的存在,即从实验上“发现”了这种奇特的粒子!
2月16日,丁洪的实验小组在物理学界知名的学术交流网站arXiv上,公开了费米弧的发现,宣布外尔费米子被发现,中国科学家领衔的团队终于率先揭开了80多年来的世界之谜!而几乎与此同时,美国普林斯顿大学教授哈桑的实验小组也在arXiv网站上公开了类似的研究成果。
围绕在外尔费米子身上长达86年的神秘面纱终于被揭下,虽然后来的“发现归属之争”问题在外界引起了一场沸沸扬扬的风波,但是丁洪对此表现得非常超脱,在他看来,外尔费米子从突破性发现到实用性材料投入应用,仍有漫长的路程要走。尚待解答的许多问题,需要科学家们继续投入相关领域的研究,这才是当下最应该关心的。
一声召唤 打起背包就回国
当初,丁洪是怀揣着梦想从美国回国的。他曾经不止一次的预言“未来的中国是一片能够成就事业的热土,也将是我的梦想开花结果的圣地。”事实证明,他的判断是正确的。
1990年从上海交大毕业之后,丁洪就飞到大洋彼岸开始追逐自己的物理梦想。读博士,做博士后,当助教、副教授,并且成为美国波士顿学院大学物理系的终身教授。18年的时间,一步一个脚印。无论是从语言表达,还是生活方式以及思维观念上,丁洪都已经完全步入了美国节奏,除了胸腔里那一颗跳跃的中国心。
2007年11月,一个来自国内的越洋电话更加触动了这颗思乡之心。电话是中科院物理所打来的,明确邀请丁洪回国加盟。在这之前,丁洪也收到了香港大学的邀约,同时美国方面也开出了高薪条件来挽留他。他正处在一种抉择之中。但是这响起的最后一个电话却一下子敲碎了丁洪缠绕已久的纠结。当即和妻子商议:回国去!
丁洪是个行动派,从接受中科院物理所的聘书到辞去在美国的一切职务到举家迁回国内,仅仅用了三个月的时间。由于丁洪在国际物理界的名气,他的归国也在中美物理学界一石激起千层浪,引起了不小的反响。
有朋友对他的未来感到担忧,认为他起码应该为自己留条后路。但是丁洪对此不以为然,他觉得君子坦荡荡,既然决定要去做的事情,必然要全力以赴。他对国内科研事业的长期关注让他做出的大胆预言:随着经济实力的提升,国家对于科技事业的重视,未来10到20年将会是中国科技发展的“黄金时期”。而他对于物理学所怀揣的梦想最大可能的圆梦地,那便是中国。丁洪对于自己的选择充满了信心!
马不停蹄的铁基高温超导实验
“我想做些更大的事情,为国家发挥更大的作用”,这是丁洪回国之际发出的心声。话音未落,刚刚回到国内的他,马不停蹄地就参与到了中科院物理所正如火如荼进行的铁基高温超导研究中。
超导指的是某些材料温度降到临界温度以下,电阻突然消失为零的现象。作为20世纪最伟大的科学发现之一,超导体具有零电阻和完全抗磁性等一系列神奇的物理特性,在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注,因此也成为21世纪的科研新宠。
丁洪之前也在美国研究了十几年的高温超导体——铜氧化合物。在2008年之前,超导体研究一直停留在铜氧化合物领域。这种材料易脆,作为输电缆应用时延展性与柔韧性不够好,在大范围的普及应用上仍有一定困难。与铜氧化合物高温超导体不同,一些铁基超导体近似于合金,从制造工艺的角度更加容易,同时还能够承受很大的电流,这就为广泛的应用奠定了基础。但同时不得不面对的是,铁基超导体性质极为复杂,对科研人员的理论功底和实验技能都提出了更高要求。
丁洪的强势加盟,让本已在铁基超导材料研究领域处于国际领先水平的中科院物理所更加如虎添翼。丁洪的研究方向是超导的机理研究,他一回国就决定集中精力做好铁基超导这种新型高温超导体的实验工作。就在他刚刚回到国内的第二天,实验室的椅子还没坐热,在当天的会议上听说有一个刚出炉的试验样品非常好,但当时的实验设备还不齐全,他就马上动用自己国际上的人脉,联系到一家日本合作者的实验室,几天之内买了机票带上样品直飞日本。
此后在日本的8天时间里,丁洪只在旅馆里住了两个晚上,其他时间都泡在实验室里,顺利完成了实验,首次发现了铁基超导体中依赖费米面的无节点的超导能隙,并且还在一周内完成了一篇质量非常高并具有深远影响力的论文,被国际同行认为是对铁基超导体的s-波对称性的建立具有奠基性意义的工作,算是打响了回国之后的第一炮。
超导机理以及全新超导体的探索是物理学界最重要的前沿问题之一,铁基高温超导体的发现是凝聚态物理的一个重大突破。对于中国科学家的这一工作,国际物理学界也予以了高度评价。那一年的岁末,荣誉接踵而来,中国的铁基高温超导研究被评为《科学》杂志“2008年度十大科学突破”、美国物理学会“2008年度物理学重大事件”以及欧洲物理学会的“2008年度最佳”。
在此后几年内,丁洪小组又对铁基超导体进行了更深入的研究,发表了50多篇文章,取得了一系列重要的研究成果,其中最突出的是用多个有说服力的实验结果揭示了短程反铁磁交换作用和相匹配的费米面是导致铁基超导的根本原因。这已成为被越来越多人的共识。
三个梦想照亮未来
当下在年轻人中流行一句话:每天早起唤醒我的,不是闹钟,是梦想。丁洪的状态也是如此。丁洪坦承:“我是一个特别爱造梦的人,爱追逐有挑战性的事情做。”他为自己设定了三个梦想。
由于多年的研究工作,丁洪接触最多的是同步辐射光源,早在2005年的时候,他就在美国的一个研讨会上提出建设一条分辨能力达到10万的软X射线光束线,但当时的参会人员纷纷表示这个想法不现实。苦于得不到支持,丁洪的第一个梦想只得暂时搁置。而在回国后不久,在中科院的支持下,丁洪申请到了财政部重大科研装备研制项目,着手在上海同步辐射光源上建一条分辨能力近10万的光束线站,已经在去年的秋天完成了工艺验收,这条线站能量分辨率的设计指标是目前国际最高水平的5倍,它在随后进行的外尔费米子的发现中起了关键的作用。这便是丁洪的第一个梦想——Dream Line(梦之线)。
丁洪的第二个梦想是建设一个北京先进光源,也就是他所讲的Dream Ring(梦之环),这将是世界上亮度最高的高能同步辐射光源。他在2009年初首次提出建设5-GeV高能储存环的北京新光源,并大力推进立项工作。目前预研项目已获得国家发改委的批准,预计将在“十三五”期间正式建设。这个世界上最先进的光源将为新材料、新能源、生态环保等国家重大战略问题提供一个强有力的支撑平台。
而丁洪的第三个梦想是Dream Center(梦中心),建设一个综合性的国家科学中心。这将是一个以大科学装置群为依托的多学科交叉的综合研究平台。目前,中科院和北京市已准备在北京怀柔区建设北京综合研究中心。为了打造这一“科技航母”,丁洪一回国就积极参与了北京综合研究中心的整体规划。用他的话说:除了忙一些科研的本职工作之外,还“跨界”做了很多工作,这也是其中之一。为了期待提高中国整体的科研水准和科研氛围,他亲自参加了近百次相关研讨会,为该中心的筹建起了至关重要的作用。
这三个梦想,有的已经播种,有的已经发芽,有的已经开花结果。丁洪表示:“在物理学方面,虽然我国的一些研究小组已经做到了世界顶尖水平,但在规模科技、大装置建设、大的科学项目上与欧美相比还有很大的差距。我很想在这方面出一把力。”而他的这三个梦想如果能够一一实现,必将有助于中国科学界整体水平和地位的提升。
丁洪不止一次地告诫自己的学生:做科学,特别是基础科学,从投入到产出,是需要一段比较长的时间的,需要你坐得了冷板凳,守得住清贫。做基础科学有一点像搞艺术,追求的是一种梦想,而不仅仅是一份养家糊口的工作,所以需要有大胸襟,大气度。
丁洪如是说,也是如此做的。身为北京凝聚态物理国家实验室首席科学家的他,每天忙碌着自己的试验、科研、培养学生,规划团队的未来、与国内外的朋友交流,还在不停地跨界合作??每天的日程排得满满当当,却不知疲惫地乐在其中,在他的三个梦想照耀下,丁洪正充满了豪情壮志,在未来的科技之路上铿锵前行!
专家简介:
丁洪,现为中国科学院物理研究所研究员,北京凝聚态物理国家实验室首席科学家。1990年毕业于上海交通大学,1995年获美国University of Illinois at Chicago的物理博士学位。1995年至1998年在美国Argonne国家实验室作博士后。1998年至2008年在美国Boston College大学物理系历任助理教授、副教授、正教授。主要研究方向为用角分辨光电子能谱研究高温超导体和新奇量子材料的电子结构和电子激发性质。在铜基超导体中赝能隙的发现、铁基超导体s-波序参量的确定和外尔费米子的发现等重大物理问题有开创性的贡献。
来源:科学中国人 2015年12期 封面人物
【院士在上海】丁洪:物理是我一生“命中注定”的“幸运之旅”
上海科技报 2024-12-09 14:32
他是美国物理学界第一位全职回国的正教授;回国之初,他便怀揣着关于大国重器的“三个梦”;如今十几年过去了,他直言“我曾经的梦想现在基本都已经成真了”……他,就是2023年中国科学院新科院士、知名凝聚态物理学家、上海交通大学李政道研究所副所长丁洪。
近日,在这些傲人的荣誉中,丁洪又增添了一个新“身份”——他被授予2024年度发展中国家科学院(TWAS)奖的物理、天文和空间科学奖(共享),以表彰他对发现外尔费米子和固体中其他新型拓扑相关准粒子的开创性贡献。
一位不纠结的行动派
像是“命中注定”般,年少时的丁洪就对自然科学领域表现出了浓厚的兴趣。被保送到上海交通大学试点班时,他既没有让喜爱多年的计算机变成自己的“专业”,也没有听老师的话进军材料系,而是遵从了父亲的意愿,义无反顾地选择了物理。
“我父亲一生的追求就是学物理。当年,在我上交专业申请书时,他甚至坐火车过来找我,只为劝我选择物理专业。”丁洪说道。自此,丁洪便迈入了物理世界的大门,并经过不断的努力和坚持,成为了一名物理学家。
从上海交大毕业后,丁洪飞到大洋彼岸继续深造。从博士到博士后,再从助教到副教授,最终成为美国波士顿学院大学物理系的终身教授。在深造的这18年间,他一步一个脚印,实现了他人眼中的“美国梦”,但只有他自己能感受到胸腔里那颗一直跳跃的中国心。他曾说过:“作为一个中国人,作为中华民族浩瀚历史中的一员,我想能够为中华民族的伟大复兴作出自己应有的贡献。”
他的愿望终究得到了实现。2007年,中国科学院物理所打来邀请他回国的电话,这也触动了丁洪的思乡之心。在妻子的支持下,他毫不犹豫地选择了回国。丁洪作为行动派,从接受中国科学院物理所的聘书到辞去在美国的一切职务后举家迁回国内,仅用了3个月的时间。
他说:“我每一次做选择,都很少瞻前顾后。于我而言,有梦想,就要想办法去实现;自己想做的事情,就立刻着手做。2022年决定加入李政道研究所,也是因为我第一次来交流时,被研究所的目标——建成世界科学家理想中的研究机构所吸引,这也是我的梦想。”
一场“3个中国梦”的实现之路
纵观科学发展,许多重大成果的发现,都少不了大科学装置的支撑。而建设同步辐射光源相关的大科学装置,也一直是丁洪的夙愿。归国以来,丁洪将很大一部分精力都放在了推动国家大科学装置和综合性国家科学中心建设上,形成了自己的“3个中国梦”,并努力将心中的宏大梦想逐一点亮——“梦之线”,建设一条世界领先的光束线站;“梦之环”,建设世界上亮度最高的高能同步辐射光源;“梦之城”,建设综合性国家科学中心。
当被问及为何执着于建设大科学装置时,丁洪说,大科学装置是催生原始创新和尖端科研成果的“利器”,能显著提高我国自主创新能力,提升国际科研话语权。在回国后的十几年间,丁洪“3个中国梦”的蓝图一直在徐徐展开,他离自己的梦想也越走越近。
如今,“梦之线”已在上海建成,是由丁洪负责在上海光源建成的一条多项技术指标世界领先的光束线站。2015年试运行期间,丁洪团队利用该装置首次在固体材料中发现了外尔费米子,围绕在外尔费米子身上长达86年的神秘面纱终于被揭下,基本粒子和准粒子内在统一现代物理学的迷宫纸窗被打开了一个洞。
“梦之环”这个大科学装置目前正在北京怀柔科学城紧张建设中,建成后可容纳90多条比“梦之线”更先进的光束线站,将在物质、生命、能源、环境乃至工业制造等多个领域发挥重要的支撑作用。预计2025年底投入运行,届时将会成为世界上体量第二但亮度第一的高能同步辐射光源。
在“梦之城”怀柔科学城,丁洪担任“综合极端条件实验装置”项目的首席专家。布局在怀柔科学城的5个大科学装置中,由中国科学院中科院物理所承建大科学建设的“综合极端条件实验装置”是最先进入科研状态的,可以提供国际一流的极低温、强磁场、超高压、超快光场等极端实验条件。在该装置的试运行期间,丁洪团队还发现了马约拉纳零能模的关键证据,未来有望应用到量子计算机中。他透露,该装置已基本建成,等完全验收后,便可向全世界开放运行。
“我把怀柔科学城称之为我心中的‘梦之城’,希望它能成为‘东方的佛罗伦萨’,成为中华民族伟大复兴的标志地之一。”丁洪表示,怀柔科学城从规划到现在已10多年的时间,启动建设也超过了5年时间,一批交叉研究平台已经建好,一些大科学装置也在陆续建设完成中,现已进入“边建设、边运行”的时期。身为全国政协委员的他,希望未来在政协这个参政议政平台“继续为怀柔科学城——我心目中的‘梦之城’贡献力量”。
下一场“铁马梦”的起航
回国的十几年间,丁洪和他的团队在量子材料和量子计算领域产出了多项具有国际重大影响力的原创性成果。丁洪极少提及他在科研工作中的艰辛和困难,在他看来,作为一名科学家,遇到些困难都是科研道路上极为正常的事,科学家就该有股创新精神和不认输的韧劲儿。
从科研人员自身来说,对研究项目的重要性和成功概率有比较清晰的判断很关键。在丁洪看来:“一旦做出了肯定的判断,那就心无旁骛‘玩命干’,也许在某个时刻就会与‘好运气’不期而遇。”
虽然已至天命之年,但丁洪仍然怀揣着少年般的激情与梦想开启了新一轮的“幸运之旅”。他的目标直指国际科技界激烈竞争的战略制高点之一——“捕捉”神秘的马约拉纳任意子。这一研究对于推进铁基超导马约拉纳平台实验至关重要,有助于在拓扑量子计算机研究领域占据主动权。丁洪将这一梦想称为“铁马梦”。
马约拉纳任意子因其特殊属性,成为拓扑量子计算机能否实现的关键。目前,多个国家的科研机构都在积极寻找这种神秘的粒子。丁洪表示,马约拉纳任意子的发现和应用,将直接影响拓扑量子计算机的发展前景。
2018年,丁洪团队与高鸿钧研究团队紧密合作,首次在铁基超导材料中观测到马约拉纳任意子。这一发现为后续研究奠定了基础。然而,如何实现马约拉纳任意子的调控和编织,仍是当前拓扑量子计算领域亟待解决的重要问题。
尽管丁洪承认“在真实宇宙中证明马约拉纳费米子的存在,大概比找到暗物质的概率还要小,在固体材料宇宙中确认马约拉纳准粒子也非常不容易”,但他始终坚信,只要坚持不懈,终将取得成功。
现在,丁洪正在努力实现自己的下一个梦想:期待用5年左右的时间发现拓扑量子比特的实现路径,或者确认它不可能实现。“我们的铁马方案,可能是拓扑量子比特最好的实现方案之一,一旦实现,量子计算机将成为可能。”通过这一宏伟目标,丁洪不仅展现出了他对科学的执着追求,而且彰显出他对未来的无限憧憬。
一份反哺育人的责任心
科研和育人,是丁洪回国后的两大“主业”。丁洪觉得,像他这样的“海归”,除了能为中国架起一座与世界科学界沟通、合作的桥梁外,还能将国外不同的科研理念带回来,在本土人才的培养中发挥一些作用。
在学生眼中,丁洪治学严谨、认真细致。“时常夜里十一二点,丁老师还在跟我们讨论问题;给他发电子邮件,对于重要的实验结果,他总是说要重复、重复、再重复,力求精确……”丁洪曾说:“做科研的最大心愿,是看到一批年轻的学生成长起来,桃李满天下的感觉真好。”
提及在学生成长中需要具备的重要要素,他认为就物理研究而言,尤其是实验物理研究,对学生的能力要求很高。从事实验物理就像成为一个“小作坊主”,要能提出好的科学问题,能规划实验路线,并懂得和人打交道;同时也需要有组装集成的能力,因为实验物理越来越向大科学方向发展;要有很强的动手能力,因为很多实验器材未必是现成的,要自己动手做才行。
“我非常看重学生的Grit,它指的是一个人的毅力、专注力及持续的热情。我常常会鼓励新生看一部电影《大地惊雷》,从中,他们会领悟到什么是持续的热情、专注力和坚毅。每一位学生加入我课题组时,我都会鼓励他们为自己做科研。身为老师,我的责任是为他们提供好的平台、开放的研究环境,以及更多和大师交流的机会。”
此外,从事物理学研究,需要具备很强的社交能力。很多时候,做物理实验需要依靠别人的设备:“我有两个发现,就是在日本的实验室和瑞士的实验室完成的,其中一个发现和别的课题组发现只相差一两天,真的体会到了‘惊心动魄’的感觉。过往的经历告诉我,没有合作者的大力帮助,靠一个人的力量,是不可能完成这些任务的。”
“前人栽树,后人结果,希望能够产出一些重磅级的科技成果。”丁洪表示,期待更多的科研团队今年可以取得新成果和好成绩,体现出科学城、科学设施带来的科学进步。
原标题:《【院士在上海】丁洪:物理是我一生“命中注定”的“幸运之旅”》
中国科技创新人物云平台暨“互联网+”科技创新人物开放共享平台(简称:中国科技创新人物云平台)免责声明:
1、中国科技创新人物云平台是:“互联网+科技创新人物”的大型云平台,平台主要发挥互联网在生产要素配置中的优化和集成作用,将互联网与科技创新人物的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态,实现融合创新,为大众创业,万众创新提供智力支持,为产业智能化提供支撑,加快形成经济发展新动能,促进国民经济提质增效升级。
2、中国科技创新人物云平台暨“互联网+”科技创新人物开放共享平台内容来源于互联网,信息都是采用计算机手段与相关数据库信息自动匹配提取数据生成,并不意味着赞同其观点或证实其内容的真实性,如果发现信息存在错误或者偏差,欢迎随时与我们联系,以便进行更新完善。
3、如果您认为本词条还有待完善,请编辑词条。
4、如果发现中国科技创新人物云平台提供的内容有误或转载稿涉及版权等问题,请及时向本站反馈,网站编辑部邮箱:kjcxac@126.com。
5、中国科技创新人物云平台建设中尽最大努力保证数据的真实可靠,但由于一些信息难于确认不可避免产生错误。因此,平台信息仅供参考,对于使用平台信息而引起的任何争议,平台概不承担任何责任。