发明公开:
[1]余一平, 高志, 倪秋龙, 杨晓雷, 辛焕海, 鞠平, 王冲, 郑迪, 杨滢, 韩中杰, 陆梦可, 邵雨琪, 苏昱辰. 基于关联分析的受端电网电压薄弱节点辨识方法、系统与计算机可读介质[P]. 江苏省: CN117575430A, 2024-02-20.
[2]王冲, 吴峰, 张磊, 鞠平, 梁伟, 石大夯. 电力故障事件驱动恢复方法、装置、设备及存储介质[P]. 江苏省: CN117374952A, 2024-01-09.
[3]王冲, 吴峰, 万灿, 鞠平. 基于改进Q学习的配电系统过程状态驱动的弹性策略方法[P]. 江苏省: CN116739074A, 2023-09-12.
[4]王冲, 鞠平, 吴峰. 一种基于马尔科夫决策的配电系统弹性策略构建的方法[P]. 江苏省: CN111860611A, 2020-10-30.
[5]王冲, 鞠平, 吴峰. 一种基于等效电路的微电网可求解边界分析的方法[P]. 江苏省: CN111817359A, 2020-10-23.
[6]鞠平, 姜婷玉, 王冲, 刘婧孜, 秦川, 刘波. 一种定频空调短期功率调节的方法[P]. 江苏省: CN111271839A, 2020-06-12.
[7]鞠平, 姜婷玉, 王冲, 刘婧孜, 刘波, 秦川, 金宇清. 考虑用户调节行为随机性的空调负荷聚合功率建模方法[P]. 江苏省: CN111209672A, 2020-05-29.
发明授权:
[1]王冲, 吴峰, 万灿, 鞠平. 基于改进Q学习的配电系统过程状态驱动的弹性策略方法[P]. 江苏省: CN116739074B, 2023-11-17.
[2]鞠平, 姜婷玉, 王冲, 刘婧孜, 刘波, 秦川, 金宇清. 考虑用户调节行为随机性的空调负荷聚合功率建模方法[P]. 江苏省: CN111209672B, 2021-11-30.
[3]王冲, 鞠平, 吴峰. 一种基于等效电路的微电网可求解边界分析的方法[P]. 江苏省: CN111817359B, 2021-11-02.
[4]鞠平, 姜婷玉, 王冲, 刘婧孜, 秦川, 刘波. 一种定频空调短期功率调节的方法[P]. 江苏省: CN111271839B, 2021-05-11.
出版专著:
电网抵御自然灾害的能力:准备、响应和恢复
Power Grid Resilience against Natural Disasters: Preparedness, Response, and Recovery
作者:雷顺波, 王冲, 侯云鹤
Online ISBN: 9781119801504
版权信息:© 2023 John Wiley & Sons, Ltd
发表论文:
以第一作者/通讯作者在IEEE Transactions on Power Systems、IEEE Transactions on Smart Grid、IEEE Transactions on Sustainable Energy、Energy、Applied Energy、 Renewable & Sustainable Energy Reviews等杂志发表论文四十余篇。
[1]Chong Wang, Ping Ju, Feng Wu, et al. Long-Term voltage stability-constrained coordinated scheduling for gas and power grids with uncertain wind power [J]. IEEE Transactions on Sustainable Energy, 2022, 12(1): 363-377.
[2]Hanchen Liu, Chong Wang, Ping Ju, et al. A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures [J], Renewable and Sustainable Energy Reviews, 2022, 156, 111945.
[3]Chong Wang, Ping Ju, Feng Wu, et al. Sequential steady-state security region-based transmission power system resilience enhancement[J]. Renewable and Sustainable Energy Reviews, 2021, 151, 111533.
[4]Chong Wang, Ping Ju, Shunbo Lei, et al. Markov decision process-based resilience enhancement for distribution systems: An approximate dynamic programming approach [J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2498-2510.
[5]Chong Wang, Ping Ju, Feng Wu, et al. Best response-based individually look-ahead scheduling for natural gas and power systems [J]. Applied Energy, 2021, 304, 117673.
[6]Chong Wang, Ping Ju, Feng Wu, et al. Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics [J]. Energy, 2021, 220, 119760.
[7]Chong Wang, Shunbo Lei, Ping Ju, et al. MDP-based distribution network reconfiguration with renewable distributed generation: An approximate dynamic programming approach [J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3620-3631.
[8]Chong Wang, Zhaoyu Wang, Jianhui Wang, et al. SVM-based parameter identification for composite ZIP and electronic load modeling [J]. IEEE Transactions on Power Systems, 2019, 34(1): 182-193
[9]Chong Wang, Zhaoyu Wang, Jianhui Wang, et al. Robust time-varying parameter identification for composite load modeling [J]. IEEE Transactions Smart Grid, 2019, 10(1): 967-979.
[10]Chong Wang, Zhaoyu Wang, Jianhui Wang, et al. Chance-constrained maintenance scheduling for interdependent power and natural gas grids considering wind power uncertainty [J]. IET Generation Transmission & Distribution, 2019, 13(5): 686-694.
[11]Chong Wang, Bai Cui, Zhaoyu Wang, et al. SDP-based optimal power flow with steady-state voltage stability constraints [J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 4637-4647.
[12]Chong Wang, Zhaoyu Wang, Yunhe Hou, et al. Dynamic game-based maintenance scheduling of integrated electric and natural gas grids with a bilevel approach [J]. IEEE Transactions on Power Systems, 2018, 33(5): 4958-4971.
PDF
[13]Chong Wang, Chee-Wooi Ten and Yunhe Hou. Inference of compromised synchrophasor units within substation control networks [J]. IEEE Transactions on Smart Grid, 2018, 9(6): 5831-5842.
[14]Chong Wang, Zhijun Qin, Yunhe Hou, et al. Multi-area dynamic state estimation with PMU measurements by an equality constrained extended Kalman filter [J]. IEEE Transactions on Smart Grid, 2018, 9(2): 900-910.
[15]Chong Wang, Bai Cui and Zhaoyu Wang. Analysis of solvability boundary for droop-controlled microgrids [J]. IEEE Transactions on Power Systems, 2018, 33(5): 5799-5802.
[16]Chong Wang, Chee-Wooi Ten, Yunhe Hou, et al. Cyber inference system for substation anomalies against alter-and-hide attacks [J]. IEEE Transactions on Power Systems, 2017, 32(2): 896-909.
[17]Chong Wang, Yunhe Hou and Chee-Wooi Ten. Determination of Nash Equilibrium Based on Plausible Attack-Defense Dynamics [J]. IEEE Transactions on Power Systems, 2017, 32(5): 3670-3680.
[18]Chong Wang, Yunhe Hou, Feng Qiu, et al. Resilience Enhancement with Sequentially Proactive Operation Strategies [J]. IEEE Transactions on Power Systems, 2017, 32(4): 2847-2857., Jul. 2017.
[19]C. Wang, Y. Hou, Z. Qin, C. Peng, and H. Zhou, “Dynamic coordinated condition-based maintenance for multiple components with external conditions,” IEEE Transactions on Power Delivery, vol. 30, no. 5, pp. 2362 - 2370, Jun. 2015.
[20]T. Lu, Z. Wang, J. Wang, Q. Ai, and C. Wang, “A data-driven Stackelberg market strategy for demand response-enabled distribution systems,” IEEE Transactions on Smart Grid, vol. 10, no.3, pp.2345-2357, Jan. 2018.
[21]C. Wang, Z. Wang, K. Zhou and S. Ma, Maintenance Scheduling of Integrated Electric and Natural Gas Grids with Wind Energy Integration, IEEE PES General Meeting, Portland, OR, 2018, pp. 1-5.
[22]C. Wang, Z. Wang and S. Ma, SVM-Based Parameter Identification for Static Load Modeling, IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, 2018, pp. 1-5.
[23]C. Wang and Z. Wang, “Maintenance scheduling of integrated electric and natural gas grids,” IEEE PES General Meeting, Chicago, IL, 2017, pp. 1-5.
[24]C. Wang and Y. Hou, “Preventive defensive strategies for power systems under persistent malicious cyberattack,” IEEE PES General Meeting, Chicago, IL, 2017, pp. 1-5.
[25]C. Wang and Y. Hou, “Reliability-based updating strategies of cyber infrastructures,” IEEE PES General Meeting, Denver, CO, 2015, pp. 1-5.
[26]C. Wang and Y. Hou, “A PMU-based three-step controlled separation with transient stability considerations,” IEEE PES General Meeting, Washington, DC, 2014, pp. 1-5.
[27]C. Wang and Y. Hou, “A novel method for optimal life cycle management scheme with Markov model,” IEEE PES General Meeting —Conference Exposition, July 2014, Washington, DC, 2014, pp. 1-5.DOI:10.1109/PESGM.2014.6939421
[28] C. Wang, H. Zhou, Y. Hou, and H. Liu, “Dynamic maintenance strategiesfor multiple transformers with markov models,” in ISGT 2014, Feb.2014, pp. 1–5.
[29] C. Wang and Z. Wang, “Short-term transmission line maintenancescheduling with wind energy integration,” in IEEE Power Energy SocietyGeneral Meeting, Jul. 2017, pp. 1–5.
发表中文期刊论文:
[1]王冲, 葛玉林, 鞠平, 陆煜. 基于碳排放动态分配调度优先级的配电系统低碳经济运行[J]. 电网技术, 2023, 47 (11): 4467-4481.
[2]王冲, 陆煜, 左娟, 鞠平. 计及光热电站与风氢系统互补运行的低碳经济调度策略[J]. 电力自动化设备, 2023, 43 (12): 188-196.
[3]刘瀚琛, 王冲, 鞠平. 双碳背景下综合能源电力系统弹性分析与提升研究综述[J]. 电气工程学报, 2023, 18 (02): 108-124.
[4]刘瀚琛, 王冲, 鞠平, 李洪宇, 孙斌. 计及统一潮流控制器的电力系统双层协调弹性调度[J]. 电力自动化设备, 2023, 43 (04): 159-167.
[5]李国庆, 王冲, 雷顺波, 王潇. 考虑碳捕集技术的电力系统双层优化配置[J]. 电力自动化设备, 2023, 43 (01): 25-31.
[6]徐俊俊, 陈洪凯, 张腾飞, 王冲. 需求响应视角下有源配电网分层分区切负荷方法[J]. 电力自动化设备, 2022, 42 (07): 244-252.
[7]王冲, 王秀丽, 鞠平, 邵成成, 李洪宇. 电力系统随机分析方法研究综述[J]. 电力系统自动化, 2022, 46 (03): 184-199.
[8]赵曰浩, 李知艺, 鞠平, 王冲. 低碳化转型下综合能源电力系统弹性:综述与展望[J]. 电力自动化设备, 2021, 41 (09): 13-23+47.
[9]鞠平, 王冲, 辛焕海, 李洪宇, 江道灼, 沈赋. 电力系统的柔性、弹性与韧性研究[J]. 电力自动化设备, 2019, 39 (11): 1-7.
[10]姜婷玉, 鞠平, 王冲. 考虑用户调节行为随机性的空调负荷聚合功率模型[J]. 电力系统自动化, 2020, 44 (03): 105-113.
[11]何裕强, 王冲, 周海强, 鞠平. 基于主动响应负荷电压调节的预防控制策略[J]. 电测与仪表, 2019, 56 (08): 131-136.
[12]王冲, 徐群. 抽水蓄能电站经济运行方式的分析[J]. 华北水利水电学院学报, 2006, (01): 45-48.